A Mechanism for Sequential Consistency in a
Distributed Objects System

Cristian Tapus, Aleksey Nogin, Jason Hickey, and Jerome White
California Institute of Technology
Computer Science Department
MC 256-80, Pasadena, CA 91125
{crt,nogin,jyh,jerome}@cs.caltech.edu

Abstract

This paper presents a new protocol for ensuring se-
quential consistency in a distributed objects system.
The protocol is efficient and simple. In addition to
providing a high-level overview of the protocol, we give
a brief discussion of the implementation details. We
also provide a mathematical model that we used to
prove the correctness of our approach.

1 Introduction

Computing systems have evolved from single, static
computation nodes to dynamic distributed environ-
ments. This evolution has raised new issues for dis-
tributed objects systems, such as maintaining consis-
tency in distributed filesystems. Several group com-
munication models have been designed [2, 4], but few
address the stricter and more intuitive consistency
models required to facilitate such complex communi-
cation schemes.

In this paper we present a decentralized protocol
for ensuring the sequential consistency of accesses to
objects in a loosely coupled distributed environment,
with specific application to distributed filesystems.

This paper is organized as follows. First, we present
the problem statement. We then give an informal
overview of a protocol that guarantees sequential con-
sistency of access in the distributed objects system.
Next we present a mathematical model and use it to
prove the basic properties of our protocol. We con-
clude by presenting future directions of research and
possible extensions of our protocol.

2 Problem statement

Consider a distributed objects system consisting of
processes and data objects. Objects are to be stored
in a distributed fashion by subsets of the set of all
processes in the system; the membership in these sub-
sets is dynamic. Processes access object data through
read and write operations. Each process may be ac-
cessing several different objects at a time. The goal of
the protocol is to provide a guarantee that the object
accesses are sequentially consistent. A system imple-
ments a sequentially consistent model if the result of
any execution is the same as if the operations of all
the processes were executed on a “master copy” in a
sequential order, and, furthermore, the operations is-
sued at each process appear in the same sequence as
specified in the program.

The protocol we propose makes the following as-
sumptions:

1. The only communication between processes is
through read and write operations to the data of
the shared objects.

2. The number of processes that access each individ-
ual object is small compared to the total number
of processes in the system. In particular, achiev-
ing a consensus between all processes accessing a
certain object at the time is considered practical,
while achieving consensus between all processes
in the system is considered impractical.

3. The network transport protocol is reliable. If a
message is sent by a process, it is eventually de-
livered.

4. Nodes are fail-stop. When a node fails, it never
comes back again.



3 Protocol Overview

We implement access to individual objects via
group communication. Processes are organized in
groups; each group is assigned to an object Optionally,
opening and closing an object could be mapped to join
and leave operations for the corresponding group.

We assume that each group uses a group total or-
der communication mechanism. Each access to object
data (i.e. a read or a write operation) is implemented
by sending an appropriate message to the group asso-
ciated with an object.

When a write message is delivered, the local copy
of the object data, if present, is updated accordingly.
The result of a read request is based on the local data
at the time the corresponding read message is delivered
back to the initiating process.

The presence of the explicit read messages, the
group total order, together with some simple con-
straints on the way individual processes send out their
messages guarantee sequential consistency.

4 Sequential consistency

As stated in Section 2, we assume that the only
communication mechanism between the applications
is through the shared object data. The protocol im-
plements each read or write access as a message in
the system. The problem of sequential consistency re-
duces to the problem of imposing an order on these
messages.

Definition 4.1. We will call an ordering O on mes-
sages consistent if it satisfies the following conditions:

1. On messages originating at the same process, the
order O is consistent with the order in which the
messages were sent by the process.

2. On messages sent to the same group, the order O
is consistent with the group total order imposed
by the group communication mechanism.

Next, we show that if there exists a consistent total
order of messages, as defined above, the sequence of
messages exchanged by the processes taking part in
the protocol is sequentially consistent.

Lemma 4.2. If all messages sent in a particular run
of the protocol can be arranged in a consistent total
order, then this run of the protocol is sequentially con-
sistent.

Proof. Suppose mg,mq,...,m, is a consistent total
ordering of messages. We can make the execution se-
quential as follows. First, run the application that
originated the message mg until the point where it
originated mg. Then perform the read/write opera-
tion specified by mg. Next, run the application that
originated my until the point where it originated m;.
Furthermore, perform the read/write operation speci-
fied by mq, and so forth. Due to condition 1 in Defi-
nition 4.1, the ordering of messages is consistent with
the execution order of each specific process, so the
sequential schedule is feasible. Because of the condi-
tion 2, the operations on each object are performed in
the order specified by the group ordering, which means
that they are performed in the same order as in each
local copy in the parallel execution. This guarantees
that the data returned by the read operations in the
sequential schedule is the same as it was in the paral-
lelized execution. O

Note that we do not require that all the messages
in the system be delivered in the same order. It is ac-
ceptable for certain messages (sent to different groups)
to be delivered “out of order” by a process in certain
cases.

Example 4.3. Figure 1 presents a situation where
messages sent by processes P3 and P4 could be seen
in different orders by P; and Ps. Assume P3 and Py
each send one write message, call them w3, and wyy.
In the case that neither of the processes P1 and P was
actively accessing objects X and Y at the time, they
can deliver messages w3, and wy, in any order. This
does not break sequential consistency because the ap-
plications running at P; and P4 are not allowed to see
the effects of these write operations until they send an
explicit read message.

Assume now that Py is active and it sees that ws,
happens before wy,. In other words, it sends two read
messages — first 71, and then ry,. It delivers ry, after
w3y, while delivering r1, before wy,. Now the condi-
tion 1 in Definition 4.1 guarantees that any consistent
order will contain 71, before r1,, and the condition 2
guarantees that any consistent order will contain ws,
before 1, and rq, before wy,. This means that every
consistent order must place ws, before ws,. However,
if Po is not actively accessing X and Y, it can still
receive messages “out of order” without affecting se-
quential consistency.



Figure 1: An “out of order” interleaving of messages
from P3 and Py is allowed during the passive periods
of P1 and P5. Once P; becomes active it enforces its
own thumbprint on the order of messages through the
read and write operations it performs.

5 Achieving sequential consistency

We approach the problem of guaranteeing sequen-
tial consistency in our implementation by picking a
specific (post-factum) total ordering of messages O.
We provide an implementation which makes sure that
O will always be consistent (in the sense of Defini-
tion 4.1).

There are different ways of picking an appropriate
O. We believe that during the protocol execution, the
earlier the messages get assigned to order O, the less
intrusive the corresponding protocol adjustments will
be. Since O must be consistent with the group to-
tal order (see condition 2 in Definition 4.1), unless we
adjust the group communication protocol to be aware
of O, the earliest a message can be assigned to O is
when the group communication protocol assigns the
message to a group total order.

Therefore, we pick O as follows — the messages in
O are ordered according to the order (from the point
of view of an external global clock) in which they are
assigned a “group sequence number” by the group to-
tal order communication protocol. This is expressed
by the following lemma.

Lemma 5.1. The protocol described in Section 3 is
sequentially consistent if the following conditions are
met:

e The group communication protocol will order
messages sent by the same process to the same
group consistently with the order in which they
were sent.

e When a process attempts to send a message to a
different group than it sent its previous message
to, the send operation is blocked and is not per-
formed until all the messages already sent by this

process get assigned to the group total order by
the group communication protocol.

By “assigned to the group total order” we mean that
the group communication protocol commits to putting
the message right after a specific message (which is
already assigned to the group total order) in the group
total order.

Proof. Let us define the relation O on messages as
“message 1 was assigned to the group total order before
(according to the external global clock) message 2”. We
claim that under the conditions above, relation O is a
consistent global total order.

The relation O is obviously a total order (without
the loss of generality, we can assume that no two events
are ever perfectly simultaneous). By construction, O
agrees with the group total order (this follows from
the way we have defined the notion of “assigned to the
group total order”).

We are left to show that on messages sent by the
same process, O agrees with the process send order. If
both messages were sent to the same group, then con-
dition 5.1 of the lemma ensures that O orders them
correctly. If the messages are sent to different groups,
then condition 5.1 of the lemma ensures that the send-
ing of the second message will be delayed until it can
be guaranteed that O will order them correctly.

Therefore, O is indeed a consistent global total or-
der on messages and by Lemma 4.2 we are guaranteed
sequential consistency. O

6 Protocol implementation overview

Lemma 5.1 provides most of the information needed
to describe our protocol implementation. In order to
achieve sequential consistency, we need a group total
order communication protocol, which makes sure that
the messages sent by the same process to the same
group are ordered consistently with the order in which
they were sent.

The implementation of the total order of messages
in a small group could be done through a variety of
methods. Decentralized group total order communica-
tion protocols, like those presented in Section 8, could
be used. Centralized methods, like the sequencer ap-
proach, can also be used. In this approach, each group
has a sequencer node that gives out labels for each of
the messages sent in that particular group.

If a process does not maintain a local copy of the
object data then the group communication protocol
needs to make sure that whenever a read message is



processed, the originator of the message is given the
appropriate data. In the case of a centralized (se-
quencer) approach, it is sufficient if only the sequencer
maintains the data and sends the correct version in re-
sponse to all the read messages.

One of the key elements of our approach is the way
we guarantee sequential consistency of messages in two
groups that have common processes. When a process
sends multiple messages to the same group, it is al-
lowed to send the request for a sequence number and
then continue with its execution until the sequence
number is granted. In the meantime, the process may
send multiple sequence number requests to the same
group. However, when a process switches the group it
sends the message to, it has to wait for all its previ-
ously requested sequence numbers to be granted before
sending a request for a sequence number in the second
group.

According to Lemma 5.1, this guarantees sequential
consistency.

7 Mathematical model

This section presents a mathematical model for the
problem presented in Section 2 based on the protocol
presented in Section 3 and provides a set of require-
ments for a possible implementation.

7.1 Definitions

First, we define the terms used throughout this sec-
tion. Consider the set of processes P = {p; | i € P},
where P is a set of indices identifying the processes.
We also define a set of groups: G = {g; | j € G},
where G is a set of indices identifying the object as-
sociated with each group (group g; is associated with
object i).

Let K be a totally-ordered set of unique labels (or
sequence numbers) used by processes to mark the or-
der of the messages they send. Let L be a totally or-
dered set of unique labels (or sequence numbers) the
group total order mechanism assigns to messages sent
to each group.

Now we can define the set M of all messages! that
can potentially be sent in the system as {mfjl | i €
Pj € Gk € K,l € Lym € {read,write}}, where

kl represents a message from process p; with process

my;
label k, sent to group g; with group label [.

1Strictly speaking these are not messages, but rather message
“headers” that are assigned post-factum. However, in this model
this distinction can be safely ignored.

We also define two relations <, and <, on messages
in M as follows:

- ! .

o <gm& <,m&l iff d<d Ab=1V
’ar

o <,mil <, méY iff c<d Na=d

The <, defines a relation on messages sent in each
group, and <, defines a relation on messages originat-
ing at each process. To make the analogy with the pro-
tocol description in Section 4, the <, relation is given
by the order imposed on messages by the group com-
munication mechanism used inside each group. The
<p relation is the order imposed on messages by the
run trace of each process. If a send operation on mes-
sage mx occurs in the run before the send operation of
message my, and both messages originate at the same
process, then mz <, my.

Now we will consider the set of messages sent in the
system for a specific run.

Definition 7.1. We will call a subset M of the set
M feasible if for any two messages m¢4, mc4, € M we
have:

1. Uniqueness:
(a=d Ne=d)e b=V Ad=4d).

This condition states that there can be at most
one message in M that was sent by a specific pro-
cess a, and labeled with a specific process label c.
It also states that there can be at most one mes-
sage sent to a specific group labeled by a specific
group label.

2. Ordering consistency: (a = d' Ab=1b) = (c <
ded<d).
For messages sent by the same process to the same
group, the ordering of messages by the originat-
ing process agrees with the ordering of the same
messages by the destination group.

Definition 7.2. Finally, we define a relation <C M x
M as <:=<43 U <,. This relation is the minimal
requirement for consistency (see Definition 4.1) — an
ordering on messages is consistent iff it agrees with
<.

7.2 Sequential consistency

Consider relation < of Definition 7.2 on a feasible
set of messages M. We present an example that il-
lustrates how we can obtain a cyclic dependency of
messages that is not sequentially consistent. The
setup in Figure 1 can also be used to show a simple



Py Py
read(X) m$

msg read(Y)
write(Y,1) mi’j
my" write(X,1)

Table 1: An interleaving of read and write operations
leading to non-sequentially consistent outcome.

example of an object access that could lead to a cyclic
dependency. Consider the two processes, P; and Pa,
that access objects X and Y. Each process issues two
operations, one on each object. Without loss of gener-
ality, assume process P, performs a read operation on
data object X and a write operation on data object
Y. Similarly, process Py performs a read operation on
data object Y and a write operation on data object
X. We can order messages according to the order re-
lation < as follows. The read operation, represented
in message notation as m¢2, is performed by process
P, before the write operation mapped to message m%.
Similarly, the read operation performed by process P,
m;’;, is performed before the write operation mg". An
illustration of this can be found in Table 1.

If we assume that the initial values of both X and
Y are 0, and that the read initiated by process Py
returned value 1, then the read operation must have
happened after the write performed by P;. We extend
the relation to include messages m‘ﬂj and mgi, giving
us the following:

m‘f2<pmii<gm§‘§<pm§§

According to the definition of relation < and sub-
ject only to the feasibility Definition 7.1, we can also
include the pair of messages mgz and m¢ b in our
relation <. This means that the read(X) operation
performed by P; was performed after P;. By a simple
examination on labels a, b, ¢, d, e, f, and g and the re-
lations deduced from the definition of <, no constraint
or assumption has been violated. If that is the case,
we have the following order:

m‘fi <me§<gm§Z<pm§2<gm?2

This enforces the return value of read(X) in pro-
cess P1 to be 1. It is easy to show now that with these
return values from the two read operations, there is
no possible sequentially consistent order of the four
operations, subject to the conditions presented in Sec-
tion 5.

We must therefore break the kind of cycles we have
seen above.

First we define a new relation on message in M.

Definition 7.3. Consider the relation <4 defined as:
méd <qmSy, iffd < d.

Next, we show how to ensure that this relation is
acyclic.

Lemma 7.4. Suppose a feasible set M satisfies an ad-
ditional strict ordering property: a = d’ = (¢ < ¢ &
d < d'). In other words, messages originating at a
node a are related under <, if and only if they are
also labeled with group labels that are similarly re-
lated under the numbers less than relation. Then the
relation <4 is acyclic on M.

Proof. From the initial assumption it follows imme-
diately that L is totally ordered by <g4. O

Next, we show that both <, and <, relations are
subsets of <4. From there we will be able to show that
relation <, which is the union of the two relations, is
also a subset of relation <4. It directly follows that <
is an acyclic relation.

Lemma 7.5. <, C <4.

Proof. By the definition of <4, all messages related
by <, are also related by <g. g

Lemma 7.6. Under the conditions of Lemma 7.4,
<p C <4

Proof. By the definition of <, : m¢¢ <, mf;/,dbi iff a =
a’ A c <. According to the strict ordering condition
a=a = (c<d < d<d). This means that d < d’,
SO mg‘é <4q mgll‘é: O

Theorem 7.7. Under the conditions of Lemma 7.4,
relation <4 is a consistent total order on M (as defined
in Definition 4.1).

Proof. From Lemma 7.5 and Lemma 7.6 it immedi-
ately follows that <, is consistent. By definition and
Lemma 7.4, <4 is total order on M. a

From this theorem, we conclude that any implemen-
tation that guarantees the strict ordering condition of
Lemma 7.4, will also guarantee sequential consistency.
If we take d to always be the timestamp (according
to the external global clock) of the moment each mes-
sage gets assigned a group serial number by the group
communication protocol, we will arrive at exactly the
same implementation as outlined in Section 6.



8 Related Work

Group communication mechanisms could be used
for the communication needed to maintain consistency
of objects stored in distributed environments. How-
ever, most of the existing group communication sys-
tems in the literature are not well suited for this prob-
lem as they usually operate on disjoint groups of nodes
and are mostly concerned with maintaining consis-
tency of messages within individual groups only [6].
The distributed objects systems we are concerned with
are not suited for global group communication due to
the large size of the set of nodes composing the sys-
tem. Furthermore, the interaction between the nodes
in the system is such that actions can not be isolated
in disjoint sub-groups. In our work we address both
the issue of non-disjoint groups and the sequential con-
sistency of messages in the system.

Other group communication work concentrates on
developing a reliable multicast layer to achieve total
order [1, 3]. For the purposes of a filesystem, for ex-
ample, this approach is not well fitted due to the lower
level of the approach and the possibility of a very large
number of multicast groups present in such systems.
The control of such ordering should ideally be at a
higher level.

There are systems that address both total order at
the application layer and multi-group process member-
ship [7, 5]. Some of these systems assume a hierarchy
of the nodes they use to obtain global total ordering
in the subgroups.

The main difference between the other presented
systems and our work is that while they try to provide
a general group communication protocol, we address
the problem of providing sequential consistency of ac-
cesses to objects in a distributed objects system. Our
problem lies at a higher level and is relying on some of
the lower level protocols provided by the other work
mentioned in this section.

9 Conclusions and Future work

The protocol presented in this paper addresses the
issue of sequential consistency of accesses to objects in
a distributed objects system. Our main contributions
consist of allowing processes to deliver messages in an
arbitrary order during their passive periods, as well as
providing consistency of inter-group communication.
Global sequential consistency is achieved by enforc-
ing explicit read messages, group total order on small
sub-groups of nodes, and very simple requirements on

sending messages. The correctness of our protocol is
proved by a mathematical model.

Future directions of research include the extension
of the protocol to support random faults at both the
node level and the network level. We are also inter-
ested in investigating different models, implemented in
a formal model checker, that would allow us to prove
complex liveness and safety properties of the protocol.

References

[1] G. V. Chockler, N. Huleihel, and D. Dolev. An
adaptive totally ordered multicast protocol that
tolerates partitions. In Proceedings of the seven-
teenth annual ACM symposium on Principles of
distributed computing, pages 237-246. ACM Press,
1998.

[2] Gregory V. Chockler, Idit Keidar, and Roman
Vitenberg. Group communication specifications:
a comprehensive study. ACM Comput. Surv.,
33(4):427-469, 2001.

[3] George Coulouris, Jean Dollimore, and Tim Kind-
berg. Distributed Systems: Concepts and Design.
Addison-Wesley, second edition, 1994.

[4] Xavier Defago, André Schiper, and Peter Ur-
ban. Total order broadcast and multicast algo-
rithms: Taxonomy and survey. Technical Re-
port 200356, Ecole Polytechnique Fédérale de Lau-
sanne, September 2003.

[6] Paul D. Ezhilchelvan, Raimundo A. Macédo, and
Santosh K. Shrivastava. Newtop: a fault-tolerant
group communication protocol. In Proceedings of
the 15th International Conference on Distributed
Computing Systems (ICDCS’95), page 296. IEEE
Computer Society, 1995.

[6] Jason Hickey, Nancy A. Lynch, and Robbert van
Renesse. Specifications and proofs for ensemble
layers. In Proceedings of the 5th International Con-
ference on Tools and Algorithms for Construction
and Analysis of Systems, pages 119-133. Springer-
Verlag, 1999.

[7] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
R. K. Budhia, and C. A. Lingley-Papadopoulos.
Totem: a fault-tolerant multicast group communi-
cation system. Commun. ACM, 39(4):54-63, 1996.



