
Improving the Efficiency of Nuprl Proofs

Aleksey Nogin

August 11, 1997

Abstract

In order to use Nuprl system [1] as a programming language with built-
in verification one has to improve the efficiency of the programs extracted
from the Nuprl proofs.

In the current paper we consider proofs from the Nuprl automata li-
brary [2]. In some of these proofs (pigeon-hole principle, decidability of
the state reachability, decidability of the equivalence relation on words
induced by the automata language) sources of exponential-time complex-
ity have been detected and replaced by new complexity cautious proofs.
The new proofs now lead to polynomial-time algorithms extracted by the
same Nuprl extractor, thus eliminating all known unnecessary exponen-
tials from the Nuprl automata library.

General principles of efficient programming on Nuprl are also dis-
cussed.

Key Words and Phrases: automata, constructivity, Myhill-Nerode
theorem, Nuprl, program extraction, program verification, state minimiza-
tion.

1 Introduction

The Nuprl system (cf.[1]) is designed to extract and execute the computational
content of constructive theorems even when it is only implicitly mentioned. For
example, given a Nuprl proof of the pigeon-hole principle in the form for any
natural number n and for any function f from {0, 1, . . . , n} to {0, 1, . . . , n− 1}
there exists a pair of numbers 0 ≤ i < j ≤ n such that f(i) = f(j), we can
extract a program which takes n, f and computes these i, j. In other words,
Nuprl can be regarded as a programming language with build-in verification: a
proof is an algorithm and its verification at the same time.

However, the computational efficiency of some existing proofs in Nuprl is
very poor, since the authors of these proofs did not attend to the efficiency
issues in their first efforts.

In the current paper we demonstrate that the computational performance of
Nuprl can be much better if we write efficiency cautious proofs. In this respect,

1

Nuprl is similar to other programming languages, where there are slow programs
and faster programs, computing the same function.

In particular, we give an exposition of the results of revising the Nuprl proof
[2] of Myhill-Nerode automata minimization theorem. In the existed proof [2]
three sources of exponential-time complexity have been detected:

1. pigeon-hole principle,

2. decidability of the state reachability,

3. decidability of the equivalence relation on words induced by the automata
language.

The convenient modular structure of Nuprl theories allows us to just write
the proofs of several corresponding lemmas in order to fix the entire proof.
Now, after the proofs of these lemmas have been analyzed and rewritten the
resulting extracted programs (extracts) became polynomial. Although it took
about 24 hours to evaluate the extract from the old version of minimization
theorem applied to some small automaton, the new extract applied to the same
automaton was evaluated during only about 40 seconds on the same computer.

The current proof of the minimization theorem illustrates that program-
ming by extract can really work. Apart from the refining of the proof of the
Myhill–Nerode theorem, we also discuss some general principles of effective pro-
gramming by extract.

Compete proofs can be found:
New ones —

at http://www.cs.cornell.edu/Info/People/nogin/automata/
Old ones — at http://www.cs.cornell.edu/Info/Projects/

NuPrl/Nuprl4.2/Libraries/Automata/.

2 Pigeon-Hole Principle

For algorithms extracted from both old and new proofs of this principle the
worst case is the case when the only pair of i > j such that f(i) = f(j) is i = 1,
j = 0. That’s why, to compare the performance we took the function

F = λx. if (x = 0) then 0 else x− 1 fi

and evaluated the extract from the proof applied to this F and different n. The
following table shows how long it took for the evaluator to get the answer:

n old proof new proof
10 7,610 ms 1,790 ms
12 29,140 ms 2,340 ms
20 ?? 5,160ms

2

http://www.cs.cornell.edu/Info/People/nogin/automata/�
http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl4.2/Libraries/Automata/�
http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl4.2/Libraries/Automata/�

2.1 Old Proof

Lemma phole aux, automata 1 theory1.

∀n : {1...}. ∀f : N(n + 1) → Nn.
∃i : N(n + 1). ∃j : {(i + 1)..(n + 1)−}. fi = fj

A Nuprl proof was done by induction.
Base. Obviously, f(0) = f(1) (= 0).
Induction step. If there exist such 0 <= k < n that f(n) = f(k) then we can
take i = k, j = n

If not then the function g = λx . if (f(x) = n− 1) then f(n) else f(x) fi is
a function from Nn to N(n− 1) and we can use the induction hypothesis. Then
we can easily prove that if g(i) = g(j) then f(i) = f(j).

Here is the Nuprl-proof of the induction step. (Proofs of all wellfoundness
subgoals are omitted).

1. n: {2...}
2. ∀f:Nn → N(-1 + n). ∃i:Nn. ∃j:{(1 + i)..n−}. f i = f j
3. f: N(n + 1) → Nn
` ∃i:N(1 + n). ∃j:{(1 + i)..(1 + n)−}. f i = f j
|
BY (Decide d∃k:Nn. f n = f ke ...a)
|\
| 4. ∃k:Nn. f n = f k
| |
1 BY (D 4 THENM InstConcl [dke;dne] ...)
\
4. ¬(∃k:Nn. f n = f k)
|
BY (RWW "not_over_exists" 4 ...a)
|
4. ∀k:Nn. ¬(f n = f k)
|
BY With dλx:Nn. if (f x =z n - 1) then f n else f x fi e (D 2)
THENM Reduce (-1)
|
2. f: N(n + 1) → Nn
3. ∀k:Nn. ¬(f n = f k)
4. ∃i:Nn. ∃j:{(1 + i)..n−}
if (f i =z n - 1) then f n else f i fi =
if (f j =z n - 1) then f n else f j fi
|

1In the Nuprl system each file with several definitions (abstractions) and lemmas (theorems)
is called a theory.

3

BY (ExRepD THENM InstConcl [die;dje] ...a)
|
4. i: Nn
5. j: {(1 + i)..n−}
6. if (f i =z n - 1) then f n else f i fi =
if (f j =z n - 1) then f n else f j fi
` f i = f j
|
BY MoveToConcl 6 THENM SplitOnConclITEs THENA Auto’

The extracted algorithm was:

1. Take n0 = n, f0 = f .

2. At the kth step:

(a) Compare (fk nk) with (fk i) for all 0 ≤ i < nk.

(b) If for some i (fk n) = (fk i) then i = i and j = nk is an answer.

(c) Else take nk+1 = nk − 1,
fk+1 = λx : Nn. if (fk x = nk − 1) then fk nk else fk x fi

3. On n− 1th step (nn−1 = 1) i = 0, j = 1 is an answer.

The problem with this algorithm is that in order to calculate (fk i) for some
i the evaluator needs to calculate fk−1 twice and calculate fk−2 four times and
so on up to the f0, which must be calculated 2k times.

This proof can be fixed by using

fk+1 = λx : Nn. ((λfx. if (fx = nk − 1) then fk nk else fx fi) (fk x)).

The refined proof will work in polynomial time but it will be much slower then
the proof described in 2.2.

2.2 New Proof

Lemma phole aux, Finite Sets theory.
The idea of new algorithm is to check whether f(i) = f(j) for all pairs

0 ≤ j < i ≤ n. We check i’s from n to 1 and for each i, the j’s from i− 1 down
to 0.

∀n : {1...}. ∀f : N(n + 1) → Nn. ∃i : N(n + 1). ∃j : Ni. fi = fj

Proof
Nuprl proof is done by (2-level) induction.

Level 1 - Base. Obviously, f(1)=f(0) (=0)
Level 1 - Induction step. This part of the proof ”programs” the main part of
the algorithm. It is done by proving some sort of invariant - if at some point

4

we haven’t found the necessary pair i, j then it exists among the pairs that we
haven’t checked yet:

∀iii : N(n + 1). ∀ii : {(iii + 1)..(n + 1)−}. ∀jj : Nii. ¬(fii = fjj)) ⇒
(∃i : N(iii + 1). ∃j : Ni. fi = fj)

”We checked all ii’s from n down to iii + 1 and haven’t found a necessary pair.
So there is a pair 0 ≤ j < i ≤ iii such that f(i) = f(j)”.

This statement is proved by induction:
Level 2 — Base. iii = 0 and we want to prove that

∀ii : {1..(n + 1)−}. ∀jj : Nii. ¬(fii = fjj)) ⇒ . . .

By the level 1 induction hypothesis we prove that the premise of this implication
is false. This argument is similar to the old proof. The only difference is that
here the induction hypothesis is used to prove that our algorithm will never
come to some point, so in fact it will never be evaluated.
Level 2 — Induction Step. Check whether there is a jj in {0..iii−} such that
(f ii) = (f jjj) (Nuprl is capable of automatically proving that properties like
∃jj : Niii. (fjj = fiii) are decidable.) If such jj is found then we are done. If
not then we can

• (in terms of the proofs) use the level 2 induction hypothesis to prove the
main goal.

• (in terms of the algorithms) take iii := iii−1 and go back to the beginning
of the main cycle.

3 State Reachability

∀Alph, St : U. ∀Auto : Automata(Alph; St). F in(Alph) ⇒
Fin(St) ⇒ ∀s : St. Dec(∃w : Alph List. Auto(w) = s)

”For all finite automata on finite alphabet and for all states of that automaton
the property this state is reachable is decidable.”

3.1 Old Proof

In the old version of the library the proof of the decidability of the state reach-
ability is in mn 12 theorem (automata 3 theory) itself.

First, the pumping lemma (pump thm cor, automata 1 theory) was used
to prove

∃t : Alph List Auto(t) = s) ⇔
(∃k : N(n + 1). ∃t : {l : Alph List | ||l|| = k}. Auto(t) = s)

5

then the proof of the decidability of

∃k : N(n + 1). ∃t : {l : Alph List | ||l|| = k}. Auto(t) = s

used auto2 lemma 6 (automata 2 theory) twice. auto2 lemma 6 states
that for every finite set T

∀P : T → P. (∀t : T. Dec(P (t))) ⇒ Dec(∃t : T. P (t))

The proofs of the finiteness of Nn and of {l : Alph List| ||l|| = k} (for finite Alph)
are called nsub is finite and auto2 lemma 5 (both were in automata 2
theory) respectively.

The algorithm extracted from the proof of auto2 lemma 6 simply checks
P (t) for all t in T from f(n − 1) down to f(0) or to the first t such that P (t)
holds (where n is the cardinality of T and f is the ”enumerating” function that
comes from definition of ”finite”). So the algorithm extracted from the proof
of the decidability of state reachability just checked all words in the alphabet
Alph whose length is less or equal to the number of states.

3.2 New Proof

The idea of the new algorithm is to compute the list of all reachable states and
then to check whether some state is reachable each time when needed. The
extracted algorithm will just check whether the state appears in that list (if
some set S is finite then the property x = y ∈ S is decidable).

The existence of the list of all reachable states is proved in more general
terms using the notion of action sets 2. An action set S over an alphabet
Alph (S : ActionSet(Alph) is a pair of a carrier (S.car ∈ U) and an action
(S.act ∈ Alph → S.car → S.car). Automata consist of examples of action sets
where the carrier is the set of states and the action is the automata function.

The Nuprl theorem reach aux (Deterministic Automata theory):

∀Alph : U. ∀S : ActionSet(Alph). ∀si : S.car.
F in(S.car) ⇒ Fin(Alph) ⇒ (∃RL : S.car List ∀s : S.car.

(∃w : Alph List. (S : w ← si) = s) ⇔ mem f(S.car; s; RL)),

where mem f(T, a, L) — a of type T is an element of T List L; S : w ← si is a
display form for the maction — function that ”takes” an action set S, a word w
in the alphabet of this set and an ”initial” element si in S.car and ”computes”
the result of transforming the initial value with S.act using letters of w as the
second argument of S.act. The formal recursive definition is

S : L ← s == if null(L) then s else (S.act hd(L)S : tl(L) ← s)) fi.

2In the previous version of library action sets were used to prove the pumping lemma

6

In the new algorithm we keep two lists of elements of S.car — RL is the
main list of reachable elements (each element should appear in RL not more
then once) and RLa — list of the elements ”pending addition to RL”.

The main part of the algorithm is ”programmed” in reach lemma:

∀Alph : U. ∀S : ActionSet(Alph). ∀si : S.car.
∀nn : N. ∀f : Nnn → Alph. ∀g : Alph → Nnn.
F in(S.car) ⇒ InvFuns(Nnn; Alph; f ; g) ⇒ (∀n : N
∃RL : {y : {x : S.car List | 0 < ||x|| ∧ ||x|| ≤ n + 1} | y[(||y|| − 1)] = si}

(∀s : S.car. (∃w : Alph List. (S : w ← si) = s) ⇔ mem f(S.car; s; RL))
∨ (||RL|| = n + 1 ∧ (∀i : N||RL||. ∀j : Ni. ¬(RL[i] = RL[j]))
∧ (∀s : S.car. mem f(S.car; s; RL) ⇒ (∃w : Alph List. (S : w ← si) = s))
∧ (∀k : N. k ≤ nn ⇒ (∃RLa : S.car List

(∀i : {1..||RL||−}. ∀a : Alph.
mem f(S.car;S.actaRL[i];RL) ∨ mem f(S.car; S.act a RL[i];RLa))
∧ (∀a : Alph. ga < k ⇒ mem f(S.car; S.act a hd(RL); RL)
∨mem f(S.car;S.act a hd(RL); RLa))

∧ (∀s : S.car. mem f(S.car; s; RLa) ⇒
(∃w : Alph List. (S : w ← si) = s))))))

Let us try to decipher this rather scary formula. We have an alphabet Alph,
an action set S over this alphabet, the initial element si in the S.car, nn — the
size of Alph; and functions f and g give us a one-to-one correspondence between
Alph and Nnn. reach lemma says that given all these objects, we can for every
natural n find a list RL (with the first element equal to si) satisfying one of the
following conditions.

1. RL consists exactly of all reachable (from si) elements of S.car

2. RL consists of n + 1 different reachable elements of S.car and for each
k ≤ nn we can construct RLa with the following properties:

(a) all elements of S.car immediately reachable from the elements of RL
(but its head) are in RL or RLa

(b) for all a : Alph such that their numbers g a < k the element
(S.act a hd(RL)) should appear in RL or in RLa

(c) all elements of RLa are reachable (from si)

We start (base case, n = 0) with si as the only element of RL. Then we
take empty RLa (for k = 0) and we go from k = 1 up to k = nn (proof by
induction) adding S.act (f (k − 1)) si to RLa on each step.

In the main cycle (induction step of the main induction) we take elements
from RLa (list induction) and check whether it is already in RL until either
we’ve found some element s in RLa but not in RL or RLa becomes empty.
If RLa becomes empty then we are finished and at this point we prove (list

7

induction on w) that 1) is actually holds. If we’ve found that s then we add it
to the top of RL and then we take the rest of RLa for k = 0 and start a cycle
(induction) for k from 1 up to nn adding S.act (f (k−1)) s to RLa on each step.

To prove reach aux we take n equal to the size of S.car, get the corre-
spondent RL from reach lemma and then we use the pigeon–hole principle to
prove that 2) can not be true — the elements of RL can not be all distinct if
RL has more elements than S.car.

4 Decidability of Language Equivalence Rela-
tion

In both versions of the library this fact was proven in mn 23 lem 1:

∀Alph : U. ∀R : Alph List → Alph List → P
Fin(Alph) ⇒ EquivRel(Alph List; x, y.x R y)
⇒ Fin(x, y : (Alph List)//(xR y))
⇒ (∀x, y, z : Alph List. x R y ⇒ (z @ x)R (z @ y))
⇒ (∀g : x, y : (Alph List)//(x R y) → B. ∀x, y : x, y : (Alph List)//(xRy)

Dec(xRg y))

where (by definition and assert iff eq lemma)

xRg y ⇔ ∀w : Alph List. g (z@x) = g (z@y)

The language L in alphabet Alph such that ∀w : Alph List. L(w) ⇔↑ (g w)
mentioned in the old version of the library was clearly redundant there, because
g itself already defines this language.

4.1 Old Proof

The main scheme of the old proof resembles the one of the old proof of decid-
ability of state reachability. First, auto2 lemma 0

∀T : U. ∀P : T → P.
(∀x : T. Dec(P x)) ∧Dec(∃x : T ¬(P x)) ⇒ Dec(∀x : T. (P x))

is used. The proof of Dec(g (z@x) = g (z@y)) is trivial so the only thing left
to prove is

Dec(∃w : Alph List. ¬(g (z@x) = g (z@y)))

Then some sort of pumping has been used to prove that

∃w : Alph List. ¬(g (z@x) = g (z@y)) ⇔
∃k : N(n ∗ n + 1). ∃z : {l : Alph List | ||l|| = k}. ¬((g (z@x) = g (z@y))

8

where n is the size of x, y : (Alph List)//(xR y). Actually the pump thm corr
itself applied to something like the action set Sp defined in the new proof could
be also used, but here the pumping was proved directly. Then auto2 lemma 6
has been used twice to establish the decidability.

So, the extracted algorithm had to check all words in the alphabet Alph
with the length up to n ∗ n to get an answer.

4.2 New Proof

First we introduce a new action set. Its carrier is the set of pairs < x, y >
defined by:

(x, y : (Alph List)//(xR y)) × (x, y : (Alph List)//(x R y))

and its action is

λa : Alph. λxy. let < x, y > = xy in < a :: x, a :: y >

This definition is correct because xR y ⇒ (a :: x)R (a :: y). Let us denote this
action set as Sp3. We can prove that Sp : z ←< x, y > = < z@x, z@y > (as
pairs of equivalence classes).

Then we use reach lemma to get the list of all pairs ”reachable” from the
pair < x, y > in this action set. Then we compute the function g on both
elements of each pair in that list and check whether in the list there exists such
a pair < xi, yi > that g xi 6= g yi.

4.3 Most Recent Proof

This version of the proof of mn 23 lem 1 is called mn 23 lem in Myhill–
Nerode Theorem theory.

The difference between this proof and the previous one is that instead of
computing a list of ”reachable” elements for each pair < x, y > we compute the
list of all pairs < x.y > such that ¬(xRg y) and then just check whether our
particular pair is in that list. Unfortunately the current evaluator evaluates this
list anew each time we need it, so this version works slower then the previous
one under the current evaluator.

First, for each element of Sp.car we compute the list of all elements imme-
diately reachable from that element (actually we compute a list of all these lists
because we want these lists to be computed once and ”memorized”). Then,
using these lists we compute for each element of Sp.car the list of all elements
from which it can be immediately reached (back listify).

We also take the list of all elements of Sp.car (fin listify) and leave only
such pairs < x, y > in it that g x 6= g y (bool listify). Then we take it

3This notation does not appear in the actual proof

9

as initial list and proceed mostly as in reach aux but going backward (with
back listify) instead of going forward getting the necessary list (list of all
pairs < x.y > such that ¬(xRg y)) at the end.

The speed of [the extract from] this proof may be significantly (and easily)
improved if we use the particular structure of our Sp — actually it can be
considered as some sort of product of two equal smaller action sets. But this
work has been postponed until a better evaluator appears.

5 Conclusion

5.1 General Principles

Here we would like to present a short review of general principles of the com-
putationally efficient programming in Nuprl, introduced in this work.

The first principle due to Robert Constable is reverse engineering. The idea
behind this is that one starts to write a proof already having some concrete
algorithm in mind. Then some invariant of this algorithm should be found and
proved in Nuprl in such a way that the extract from this proof actually works
as the desired algorithm. In this way the cycles of the algorithm usually become
the inductions in the proof, the “if” operator becomes something like Decide
tactics and so on.

The second method is called the lists as memory principle. It is illustrated
by our “Most recent proof” of the decidability of the language relation. Here
the idea is in evaluating a sufficient amount of data in advance, the evaluator
gets to that by reuse it instead of evaluating it each time it is needed. Under
this approach one has to put all the necessary data in several lists and look
through these lists when necessary. A small problem with this approach is that
it does not seem to work with the current Nuprl evaluator.

5.2 Suggestions for Further Improvement

Although the algorithms extracted from the new proofs in the Nuprl automata
library work fast on small automata, a lot of further improvements should be
done in both the automata library and the Nuprl system itself to make the
proofs shorter, faster and more readable. Here are some suggestions

1. The Nuprl evaluator should be essentially rewritten. The current one very
often unnecessarily evaluates the same things several times. Probably a
new evaluator should use dag-structures for representing terms.

2. If mn 23 lem will work faster than mn 23 lem 1 with the new evaluator
then it should be improved in section 4.3.

10

3. The definition of finite turned out to be very inconvenient. We propose
alternative definitions:

Fin(T) == ∃FL : T List. ∀t : T. mem f(T, t, FL)

FinDec(T) == Fin(T) ∧ ∀t1, t2 : T. Dec(t1 = t2 ∈ T)

(It can be easily proven in Nuprl that FinDec is equivalent to the current
definition of finite). If the automata library were rewritten with these
definitions, then many lemmas would have much shorter proofs (especially
inv of fin is fin) and minimization would work faster, at least with a
new evaluator (above).

4. In the current version of the library (as well as in the previous ones) the
new abstraction mn quo append has been introduced, which is equal to
append but has special wellfoundness lemma. It really creates a lot of
technical difficulties in some lemmas. A better way is to prove an extra
wellfoundness lemma for append itself.

6 Acknowledgments

I am greatly indebted to R.Constable for his generous sharing with me his
observations concerning complexity of the programs extracted from the Nuprl
proofs. I am grateful to A.Razborov and L.Beklemishev for educating me about
the complexity theory and the proof theory, and P.Naumov for teaching me
Nuprl, and R.Eaton for his patient and friendly cooperation.

References

[1] R. L. Constable, S. F. Allen, H. Bromley, W. Cleaveland, J. Cremer,
R. Harper, D. J. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. T.
Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl Devel-
opment System. Prentice-Hall, NJ, 1986.

[2] R. L. Constable, P. B. Jackson, P. Naumov, and J. Uribe. Constructively
formalizing automata. In Proof Language and Interaction: Essays in Honour
of Robin Milner. MIT Press, Cambridge, 1997.

[3] C. Paulin and B. Werner. Extracting and executing programs developed in
the inductive construction systems. In Proc. of First Annual Workshop of
Logical Frameworks, pages 349–361. Sophia-Antipolis, France, 1990.

[4] J. T. Sasaki. The Extraction and Optimization of Programs from Construc-
tive Proofs. PhD thesis, Cornell University, 1985.

11

