
CS101C Homework 9

Due: Wednesday, June 4, 11:59PM (firm)
Collaboration: You are allowed and encouraged to work together and

collaborate on all aspects of this homework. However, your submission must
be your own; you must type in your homework without referring to shared
or other “external” material. For example, suppose you work as part of a
group to prove a long, complicated theorem; and suppose you sketch the
proof on the board. When you enter the proof into MetaPRL for homework
submission, you must not refer to the board — you must recover the proof
from your own memory.

Setup

Start this homework by updating MetaPRL to revision 12 (e.g. version
“0.8.3 (CS101 rev 12)”). Note: when upgrading between revisions 11 (or
earlier) and 12 (or later), there is an extra step in upgrade process. Upgrade
instructions are available at http://nogin.org/cs101c/mp-update.html.

In directory theories/itt of your MetaPRL installation, create files
cs101 hw9 name.ml and cs101 hw9 name.mli (where name is your login
name). Add cs101 hw9 name to the end of the MPFILES variable in the
theories/itt/Makefile.

For this homework, you should be working within the ITT theory. You
are not allowed to add any new prim rules or rewrites to the system and you
are not allowed to modify the system in any way, other than extending it
with your new hw9 module.

Note: after you change the MPFILES variable in the Makefile or add
a new extends or open directives to a MetaPRL file and before you run
make opt, you might need to run make depend to update the cross-module
dependencies.

In all problems of this homework you may add extra well-formedness
assumption(s) when it is necessary to make the rules provable. Make sure
you only add the one(s) that are truly necessary. In particular, do not add
well-formedness assumptions for variables that already have one. Also, you
might find it useful to formulate and prove some “intermediate” lemmas,
maybe even define new operator(s).

1

http://nogin.org/cs101c/mp-update.html


Part I: Top

Prove that the types V oid → A and A → Top are extensionally equal. Hints :
the extensional equality operator, ext equal is defined in the Itt ext equal

module; use fnExtenT tactic (documented in itt quickref.txt).

Part II: Records

Hint : You might want to take a look at the Itt record exm module. It
should give you a better idea of how to type in record types and records and
how to prove their properties.

1. Using the record type constructors defined in Itt record, define the
type constructor stacks such that for any type T , stacks[i: l]{T} is
a type of all possible records that have the following fields:

(a) t of type Ui,

(b) empty of type t,

(c) is empty of type t→ Bool

(d) push of type t→ T → t,

(e) pop of type {s : t | ¬(↑ (is empty s))} → (T × t).

Prove that for an appropriate T , stacks[i: l]{T} ∈ Ui′ and stacks[i: l]{T}
is a type.

2. What properties of t, empty, is empty, push and pop would you expect
a member of the stacks[i: l]{T} type to have, if it really implements a
stack, and not something random? Define a predicate is valid{T ; s}
that given T ∈ Ui and s ∈ stacks[i: l]{T} states that s is a “cor-
rect” implementation. (Hint : The definition I would give would have
3 separate clauses joined by “and”s.) Define

valid stacks[i: l]{T} := {s : (stacks[i: l]{T}) | is valid{T ; s}}
and prove that valid stacks[i: l]{T} is a type.

3. Using any ITT operators you want, define a stack operator such that
for any T ∈ Ui, stack{T} ∈ valid stacks[i: l]{T}. (Hint : forget
about MetaPRL and ITT for a second and think how you would imple-
ment this in OCaml if you could not use mutable data structures. Then
do the same thing in ITT.) Prove that stack{T} indeed has the given
type.

2



Part III (optional): Course feedback

This part is optional. If you want, you can submit your comments anony-
mously (see the “Submission Instructions” section below).

Please let us know what you thought of this course. Were the lectures
easy to understand? Were they too fast/too slow? Were the homeworks
too hard/too easy? Any suggestions on how this course could be improved?
How hard was MetaPRL to learn and use? Is there any functionality that
you think MetaPRL is missing?

Thanks a lot for any feedback you can provide!

Submission Instructions

Parts I and II: Make sure you export all the proofs. Send all the files
cs101 hw9 name.ml, cs101 hw9 name.mli and cs101 hw9 name.prla as
text attachments in an email to cs101-admin@metaprl.org. Please include
“CS101 HW9” in the message subject line.

Part III: You can email your feedback to cs101-admin@metaprl.org

(please include “CS101 feedback” in the message subject line, if possible).
If you want to remain anonymous, feel free to use an anonymizing remailer
(such as, for example, https://riot.eu.org/anon/remailer.html.en; or
see a list at http://dmoz.org/Computers/Internet/E-mail/Anonymous_

Mailers/) or leave it in Aleksey Nogin’s or Xin Yu’s mailbox on 2nd floor
in Jorgensen.

3

mailto:cs101-admin@metaprl.org
mailto:cs101-admin@metaprl.org
https://riot.eu.org/anon/remailer.html.en
http://dmoz.org/Computers/Internet/E-mail/Anonymous_Mailers/
http://dmoz.org/Computers/Internet/E-mail/Anonymous_Mailers/

