
CS101C Homework 8

Due: Wednesday, May 28, 9PM (firm)
Collaboration: You are allowed and encouraged to work together and

collaborate on all aspects of this homework. However, your submission must
be your own; you must type in your homework without referring to shared
or other “external” material. For example, suppose you work as part of a
group to prove a long, complicated theorem; and suppose you sketch the
proof on the board. When you enter the proof into MetaPRL for homework
submission, you must not refer to the board — you must recover the proof
from your own memory.

Setup

Start this homework by updating MetaPRL to revision 11 (e.g. version
“0.8.3 (CS101 rev 11)”). Upgrade instructions are available at http://

nogin.org/cs101c/mp-update.html.
In this homework you will be extending the cs101 hw8 theory (which

is a simplified version of the theory of collection type, itt collection).
In directory theories/itt of your MetaPRL installation, rename the files
cs101 hw8.ml

cs101 hw8.mli

cs101 hw8.prla

into
cs101 hw8 name.ml
cs101 hw8 name.mli
cs101 hw8 name.prla

respectively

(where name is your login name). In file cs101 hw8 name.prla, replace
all occurrences of string Cs101 hw8 with Cs101 hw8 name (use your favorite
text editor’s “replace all” functionality). Finally, add cs101 hw8 name to
the end of the MPFILES variable in the theories/int/Makefile.

For this homework, you should be working within the ITT theory. You
are not allowed to add any new prim rules or rewrites to the system and you
are not allowed to modify the system in any way, other than extending it
with your new hw8 module.

Note: after you change the MPFILES variable in the Makefile or add
a new extends or open directives to a MetaPRL file and before you run
make opt, you might need to run make depend to update the cross-module
dependencies.

In all problems of this homework you may add extra well-formedness
assumption(s) when it is necessary to make the rules provable. Make sure
you only add the one(s) that are truly necessary. In particular, do not add

1

http://nogin.org/cs101c/mp-update.html
http://nogin.org/cs101c/mp-update.html


well-formedness assumptions for variables that already have one. Also, you
might find it useful to formulate and prove some “intermediate” lemmas,
maybe even define new operator(s).

This homework requires good understanding of quotient and esquash type
operators. For more information on those operators, see the theories.pdf

and the “Quotient Types: A Modular Approach” paper. The “quotient”
paper also has some information on the type of collections that might be
useful for the part II of this homework.

Part I: Unordered pairs

1. Define a pairs{T} operator such that whenever T is a type, then
pairs{T} is a type of unordered pairs of elements of T . In other words,
two terms should be equal in pairs{T} if and only if each one is a pair
of elements of T and the seconds ones contains the same elements of T
as the first one, possibly in the reverse order.

Prove that pairs{T} is a type whenever T is a type and that pairs{T}
is in Ui whenever T is in Ui.

Optional: to make sure your definition is correct, prove (1, 1) ∈ pairs{Z}
(Z is a type of integers, Itt int base!int, use int to type it in) and
(2, 1) = (1, 2) ∈ pairs{Z}

2. Define a sum{p} operator that given a pair of integers returns the sum
of the two components of the pair. Prove that sum{p} ∈ Z whenever
p ∈ pairs{Z}
Optional: to make sure your definition is correct, prove sum{(1, 2)} ↔
3.

Hints: Integer addition operation is Itt int base!add; use a +@ b to
type it in. You can use add Commut rule to prove commpuativity of
addition and/or add CommutC conversion (you might have to call it
through addrC to reorder arguments) in an add term.

Part II: Lists

1. Define a col sub{c1; c2} operator such that col sub{c1; c2} is a collec-
tion that contains all elements of collection c1 that are not members of
collection c2. There may be many different ways of defining col sub,
make sure that you pick a definition that would make all the statements
below provable.

2



2. Prove that whenever c1 and c2 are members of Coli{T}, then col sub{c1; c2}
is also a member of that type.

3. Prove the rules:

Γ ` t ∈c c1 Γ ` ¬(t ∈c c2)

Γ ` t ∈c col sub{c1; c2}

Γ ` t ∈c col sub{c1; c2}
Γ ` t ∈c c1

Γ ` t ∈c col sub{c1; c2}
Γ ` ¬(t ∈c c2)

where ∈c (displayed ∈(c) in xterm) is the collection mem operator.

Submission Instructions

Make sure you export all the proofs. Send all the files cs101 hw8 name.ml,
cs101 hw8 name.mli and cs101 hw8 name.prla as text attachments in an
email to cs101-admin@metaprl.org. Please include “CS101 HW8” in the
message subject line.

3

mailto:cs101-admin@metaprl.org

