
CS101C Homework 7

Due: Wednesday, May 21, 9PM (firm)
Collaboration: You are allowed and encouraged to work together and

collaborate on all aspects of this homework. However, your submission must
be your own; you must type in your homework without referring to shared
or other “external” material. For example, suppose you work as part of a
group to prove a long, complicated theorem; and suppose you sketch the
proof on the board. When you enter the proof into MetaPRL for homework
submission, you must not refer to the board — you must recover the proof
from your own memory.

Setup

Start this homework by updating MetaPRL to revision 10 (e.g. version
“0.8.3 (CS101 rev 10)”). Upgrade instructions are available at http://

nogin.org/cs101c/mp-update.html.
In this homework you will be extending the cs101 list2 theory (which is

based on portions of the itt list2 module) that was presented in the lecture
on May 14th. In directory theories/itt of your MetaPRL installation, copy

the files
cs101 list2.ml

cs101 list2.mli

cs101 list2.prla

into
cs101 hw7 name.ml
cs101 hw7 name.mli
cs101 hw7 name.prla

respectively

(where name is your login name). In file cs101 hw7 name.prla, replace all
occurrences of string Cs101 list2 with Cs101 hw7 name (use your favorite
text editor’s “replace all” functionality). Finally, add cs101 hw7 name to
the end of the MPFILES variable in the theories/int/Makefile.

For this homework, you should be working within the ITT theory. You
are not allowed to add any new prim rules or rewrites to the system and you
are not allowed to modify the system in any way, other than extending it
with your new hw7 module.

Note: after you change the MPFILES variable in the Makefile or add
a new extends or open directives to a MetaPRL file and before you run
make opt, you might need to run make depend to update the cross-module
dependencies.

In all problems of this homework you may add extra well-formedness
assumption(s) when it is necessary to make the rules provable. Make sure
you only add the one(s) that are truly necessary. Also, you might find it useful

1

http://nogin.org/cs101c/mp-update.html
http://nogin.org/cs101c/mp-update.html


to formulate and prove some “intermediate” lemmas, maybe even define new
operator(s).

Part I: Squash and squash–stability

1. Prove the rule

Γ; [B] ` B Γ; [C] ` C

Γ; [A ⇒ (B ∧ C)] ` A ⇒ (B ∧ C)

2. Prove the rule

Γ; x : Unit; [A[x]] ` A[x]

Γ; [∃x : Unit.A[x]] ` ∃x : Unit.A[x]

Part II: Lists

1. Define a rev operator that would compute a reverse of a list (e.g.
rev{l} would have the same elements as list l, but in reverse order).
Replace the placeholder definition unfold rev with your definition.
Optional: if you want to double-check your definition is correct, use it
to prove, for example, rev{a :: b :: c :: nil} ↔ c :: b :: a :: nil.

2. State, prove and add to reduce resource the reductions of nil and cons

cases of rev (similar to those that are already present for append).

3. Prove that rev{rev{l}} is the same as l.

Submission Instructions

Make sure you export all the proofs. Send all the files cs101 hw7 name.ml,
cs101 hw7 name.mli and cs101 hw7 name.prla as text attachments in an
email to cs101-admin@metaprl.org. Please include “CS101 HW7” in the
message subject line.

2

mailto:cs101-admin@metaprl.org

