CS101 (Fall 2005) Special Topics in Computer Science Language-Based Security

Substitution Lemma (Partial Proof)

Last Update: October 12, 2005 20:51

Lemma. If $\Gamma; x: t_1; \Delta \vdash e_1 \in t_2$ and $\Gamma; \Delta \vdash e_2 \in t_1$, then $\Gamma; \Delta \vdash e_1[e_2/x] \in t_2$.

Proof. First we formulate the lemma more precisely, as follows:

For any variable x, expression e_2 , and type t_1 , for any derivation $D_1, D_2 \in \mathbb{D}$ (where \mathbb{D} is the set of all well-formed λ -Calculus typing derivations that we have defined inductively in class), for any variable contexts Γ and Δ , for any expressions e_1 , and type t_2 ,

If D_1 ends with $\Gamma; x: t_1; \Delta \vdash e_1 \in t_2$ and D_2 ends with $\Gamma; \Delta \vdash e_2 \in t_1$, then $\Gamma; \Delta \vdash e_1[e_2/x] \in t_2$ is derivable.

Now, given a variable x, expression e_2 , and type t_1 , we prove the statement of the Lemma by structural induction on derivation D_1 (the statement that we are proving by induction is "for any D_2 , Γ , Δ , e_1 , and t_2 , ..."). There are 5 cases to consider (one case for each of the derivation rules in the λ -Calculus type system). Here we present the case that corresponds to the (Fun) rule.

Case (Fun). D_1 has a form

$$\frac{\dots}{\Sigma; y: \tau_1 \vdash f \in \tau_2} D_1'$$

$$\Sigma \vdash \lambda y: \tau_1.f \in \tau_1 \to \tau_2$$
(Fun)

where $D'_1 \in \mathbb{D}$ is a subderivation of D_1 . (Note — since we can alpha-rename y without affecting x, we can assume that x and y are distinct without loss of generality).

The statement that we are trying to prove requires us to assume that for some Γ , Δ , e_1 , e_2 , and t_2 , D_1 ends with Γ ; $x : t_1$; $\Delta \vdash e_1 \in t_2$. Since a derivation can only end with a single formula, this means that Γ ; $x : t_1$; $\Delta \vdash e_1 \in t_2 = \Sigma \vdash \lambda y : \tau_1 . f \in \tau_2$. From that we conclude that

$$\Sigma = \Gamma; x : t_1; \Delta$$

$$e_1 = \lambda y : \tau_1.f$$

$$t_2 = \tau_1 \to \tau_2$$

Now, by using the inductive hypothesis for D_1 with the appropriate D_2 , Γ , Δ , e_1 , and t_2 (namely, we take $\Gamma' := \Gamma$, $\Delta' := \Delta; y : \tau_1, e'_1 := f, t'_2 := \tau_2$, and D'_2 to be the result of taking the original D_2 and adding an extra hypothesis $y : \tau_1$ as needed¹) we get that $\Gamma; \Delta; y : \tau_1 \vdash f[e_2/x] \in t_2$ is derivable. Using the same (Fun) rule

$$\frac{\Gamma; \Delta; y: \tau_1 \vdash f[e_2/x] \in \tau_2}{\Gamma; \Delta \vdash \lambda y: \tau_1. f[e_2/x] \in \tau_1 \to \tau_2}$$
(Fun)

we can conclude that $\Gamma; \Delta \vdash \lambda y : \tau_1 \cdot f[e_2/x] \in t_2$ is derivable. This is almost exactly what we needed to prove, except we needed $(\lambda y : \tau_1 \cdot f)[e_2/x]$ and instead we got $\lambda y : \tau_1 \cdot (f[e_2/x])$. Fortunately, the from the properties of substitution it follows that the two expressions are the same² (as before, we assume that all variable names are distinct and there are no issues with variable naming during substitution).

¹Strictly speaking, we need to prove a separate lemma by induction on D_2 — "if D_2 is a valid derivation, we can add an extra hypothesis $y : \tau_1$ to it and the result will be a valid derivation". The proof of such lemma is very straightforward, so we label it as "obvious" and do not provide it here.

²Again, strictly speaking, this should be proven by structural induction on f. And again we pretend that it's "obvious".