
CS101C

Type Theory
and Formal Methods

Lecture 5

April 14, 2003

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 1/10

λ-Calculus
Invented in 1932-33 by Church.

Idea: standard notation for a function taking an argument: λx.e

OCaml: fun x -> e

SML: fn x => e

Lisp: (lambda (x)(e))

Haskell: \x -> e

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 2/10

λ-Calculus
Variables: a single variable is a λ-term.

Functions: λx.t, where t is an arbitrary λ-term. (Or using a
“smart” syntax: λx.t[x], where t is a meta-variable.)

Application: t1(t2) (or just: t1 t2), where t1 and t2 are
arbitrary λ-terms.

β-reduction:

λx.t t2 ↔ t with t2 substituted for x

or in “smart” syntax:

λx.t[x] t2 ↔ t[t2]

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 3/10

Examples

(λx.x) y → y

(λx.y) z → y

(λf.f x) (λy.y) → (λy.y) x

(λf.f f) (λf.f f) → (λf.f f) (λf.f f)

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 4/10

Free variables
Variable x is free is a λ-term x.

If t is a λ-term, then all free variables of t, are free in λx.t,
except for x. All free occurrences of x in t become bound
in λx.t and the λx. is a binding occurrence for them.

If t1, t2 are λ-terms, then all free occurrences of t1 and t2
are also free in t1 t2.

Examples:

λx.x

x λx.x

λx.(x λx.x)

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 5/10

α-equality

Names of bound variables do not matter!

If some binding occurrences are renamed together with the
corresponding bound occurrences and the binding structure
remains the same (e.g. each bound position renames bound by
the same λ), then the resulting term is α-equal to the original
one.

Example: λx.x =α λy.y

Note: λx.λy.x 6=α λy.λy.y — here a capture happened.

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 6/10

Capture-avoiding
substitution

Suppose t and t′ are λ-terms. To perform capture-avoiding
substitution of t′ for x in t

α-rename bound variables in t to avoid collisions with free
variables in t′

replace all free occurrences of x in t with t′

Examples:

λx.x with y substituted for x is λx.x

λy.x with y substituted for x is λz.y

x (λx.x) with λx.x substituted for x is (λx.x) (λx.x)

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 7/10

λ-Calculus
Variables: a single variable is a λ-term.

Functions: λx.t, where t is an arbitrary λ-term. (Or using a
“smart” syntax: λx.t[x], where t is a meta-variable.)

Application: t1(t2) (or just: t1 t2), where t1 and t2 are
arbitrary λ-terms.

β-reduction:

λx.t t2 ↔ t with t2 substituted for x

or in “smart” syntax:

λx.t[x] t2 ↔ t[t2]

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 8/10

Meta-Variables as
Patterns

t[] matches any λ-term

λx.t[x] matches any λ-term with λ on top
Semantics: t[•] can not have free occurrences of x

λx.t[] matches any λ-term with λ on top, where the body does not
have any variable occurrences bound by that top λ

t[x] matches any λ-term
Semantics: t[•] can have free occurrences of x

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 9/10

Examples

λ-term Pattern to match
λx.t[x] λy.t[] λx.λy.t[x]

λz.z Y N N
λz.x Y Y N

λy.λy.y Y Y N
λx.λy.(x λy.y) Y N Y

CS101C: Type Theory and Formal Methods Lecture 5 April 14, 2003 – p. 10/10

	$lambda $-Calculus
	$lambda $-Calculus
	Examples
	Free variables
	$alpha $-equality
	Capture-avoiding substitution
	$lambda $-Calculus
	Meta-Variables as Patterns
	Examples

