CS101C Type Theory and Formal Methods

Lecture 5

April 14, 2003

CS101C: Type Theory and Formal Methods

λ -Calculus

```
Invented in 1932-33 by Church.
```

Idea: standard notation for a function taking an argument: $\lambda x.e$

```
OCaml: fun x -> e
```

```
SML: fn x => e
```

```
Lisp: (lambda (x) (e))
```

```
Haskell: \x \rightarrow e
```


λ -Calculus

- Variables: a single variable is a λ -term.
- Functions: $\lambda x.t$, where t is an arbitrary λ -term. (Or using a "smart" syntax: $\lambda x.t[x]$, where t is a *meta-variable*.)
- Application: $t_1(t_2)$ (or just: $t_1 t_2$), where t_1 and t_2 are arbitrary λ -terms.
- \blacksquare β -reduction:

 $\lambda x.t t_2 \leftrightarrow t \text{ with } t_2 \text{ substituted for } x$

or in "smart" syntax:

 $\lambda x.t[x] t_2 \leftrightarrow t[t_2]$

Examples

$$\begin{aligned} &(\lambda x.x) y \to y \\ &= (\lambda x.y) z \to y \\ &= (\lambda f.f x) (\lambda y.y) \to (\lambda y.y) x \\ &= (\lambda f.f f) (\lambda f.f f) \to (\lambda f.f f) (\lambda f.f f) \end{aligned}$$

Free variables

- Variable x is free is a λ -term x.
- If t is a λ-term, then all free variables of t, are free in λx.t, except for x. All *free* occurrences of x in t become *bound* in λx.t and the λx. is a binding occurrence for them.
- If t₁, t₂ are λ-terms, then all free occurrences of t₁ and t₂ are also free in t₁ t₂.

Examples:

λx.x
x λx.x
λx.(x λx.x)

α -equality

Names of bound variables do not matter!

If some binding occurrences are renamed together with the corresponding bound occurrences and the *binding structure* remains the same (e.g. each bound position renames bound by the *same* λ), then the resulting term is α -equal to the original one.

Example: $\lambda x.x =_{\alpha} \lambda y.y$

Note: $\lambda x.\lambda y.x \neq_{\alpha} \lambda y.\lambda y.y$ — here a *capture* happened.

Capture-avoiding substitution

Suppose t and t' are λ -terms. To perform *capture-avoiding* substitution of t' for x in t

- α -rename *bound* variables in t to avoid collisions with *free* variables in t'
- replace all *free* occurrences of x in t with t'

Examples:

- $\land \lambda x.x$ with y substituted for x is $\lambda x.x$
- $\lambda y.x$ with y substituted for x is $\lambda z.y$
- $\blacksquare x (\lambda x.x)$ with $\lambda x.x$ substituted for x is $(\lambda x.x) (\lambda x.x)$

λ -Calculus

- Variables: a single variable is a λ -term.
- Functions: $\lambda x.t$, where t is an arbitrary λ -term. (Or using a "smart" syntax: $\lambda x.t[x]$, where t is a *meta-variable*.)
- Application: $t_1(t_2)$ (or just: $t_1 t_2$), where t_1 and t_2 are arbitrary λ -terms.
- \blacksquare β -reduction:

 $\lambda x.t t_2 \leftrightarrow t \text{ with } t_2 \text{ substituted for } x$

or in "smart" syntax:

 $\lambda x.t[x] t_2 \leftrightarrow t[t_2]$

Meta-Variables as Patterns

t[] matches any λ -term

 $\lambda x.t[x]$ matches any λ -term with λ on top Semantics: $t[\bullet]$ can not have free occurrences of x

- $\lambda x.t[]$ matches any λ -term with λ on top, where the body does not have any variable occurrences bound by that top λ
- t[x] matches any λ -term

Semantics: $t[\bullet]$ can have free occurrences of x

λ -term	Pattern to match		
	$\lambda x.t[x]$	$\lambda y.t[]$	$\lambda x.\lambda y.t[x]$
$\lambda z.z$	Y	Ν	Ν
$\lambda z.x$	Y	Y	Ν
$\lambda y.\lambda y.y$	Y	Y	Ν
$\lambda x.\lambda y.(x \ \lambda y.y)$	Y	Ν	Y

