CS101C
 Type Theory and Formal Methods

Lecture 5

April 14, 2003

λ-Calculus

Invented in 1932-33 by Church.
Idea: standard notation for a function taking an argument: $\lambda x . e$
OCaml: fun x -> e
SML: $f \mathrm{n}$ x $=>$ e
Lisp: (lambda (x) (e))
Haskell: \x -> e

λ-Calculus

$■$ Variables: a single variable is a λ-term.
$■$ Functions: $\lambda x . t$, where t is an arbitrary λ-term. (Or using a "smart" syntax: $\lambda x . t[x]$, where t is a meta-variable.)
\square Application: $t_{1}\left(t_{2}\right)$ (or just: $t_{1} t_{2}$), where t_{1} and t_{2} are arbitrary λ-terms.
■ β-reduction:

$$
\lambda x . t t_{2} \leftrightarrow t \text { with } t_{2} \text { substituted for } x
$$

or in "smart" syntax:

$$
\lambda x . t[x] t_{2} \leftrightarrow t\left[t_{2}\right]
$$

Examples

$$
\begin{aligned}
& \square(\lambda x . x) y \rightarrow y \\
& ■(\lambda x . y) z \rightarrow y \\
& ■(\lambda f . f x)(\lambda y . y) \rightarrow(\lambda y . y) x \\
& ■(\lambda f . f f)(\lambda f . f f) \rightarrow(\lambda f . f f)(\lambda f . f f)
\end{aligned}
$$

Free variables

\square Variable x is free is a λ-term x.
\square If t is a λ-term, then all free variables of t, are free in λx.t, except for x. All free occurrences of x in t become bound in λx.t and the λx. is a binding occurrence for them.
\square If t_{1}, t_{2} are λ-terms, then all free occurrences of t_{1} and t_{2} are also free in $t_{1} t_{2}$.

Examples:
■ λx. x
■ $x \lambda x . x$
■ $\lambda x .(x \lambda x . x)$

α-equality

Names of bound variables do not matter!
If some binding occurrences are renamed together with the corresponding bound occurrences and the binding structure remains the same (e.g. each bound position renames bound by the same λ), then the resulting term is α-equal to the original one.

Example: $\lambda x . x={ }_{\alpha} \lambda y . y$
Note: $\lambda x \cdot \lambda y . x \neq \alpha \lambda y . \lambda y . y$ - here a capture happened.

Capture-avoiding substitution

Suppose t and t^{\prime} are λ-terms. To perform capture-avoiding substitution of t^{\prime} for x in t
$\square \alpha$-rename bound variables in t to avoid collisions with free variables in t^{\prime}
■ replace all free occurrences of x in t with t^{\prime}

Examples:

■ $\lambda x . x$ with y substituted for x is $\lambda x . x$
$\square \lambda y . x$ with y substituted for x is $\lambda z . y$
$■ x(\lambda x . x)$ with $\lambda x . x$ substituted for x is $(\lambda x . x)(\lambda x . x)$

λ-Calculus

$■$ Variables: a single variable is a λ-term.
$■$ Functions: $\lambda x . t$, where t is an arbitrary λ-term. (Or using a "smart" syntax: $\lambda x . t[x]$, where t is a meta-variable.)
\square Application: $t_{1}\left(t_{2}\right)$ (or just: $t_{1} t_{2}$), where t_{1} and t_{2} are arbitrary λ-terms.
■ β-reduction:

$$
\lambda x . t t_{2} \leftrightarrow t \text { with } t_{2} \text { substituted for } x
$$

or in "smart" syntax:

$$
\lambda x . t[x] t_{2} \leftrightarrow t\left[t_{2}\right]
$$

Meta-Variables as Patterns

t] matches any λ-term
$\lambda x . t[x]$ matches any λ-term with λ on top
Semantics: $t[\bullet]$ can not have free occurrences of x
$\lambda x . t[]$ matches any λ-term with λ on top, where the body does not have any variable occurrences bound by that top λ
$t[x] \quad$ matches any λ-term
Semantics: $t[\bullet]$ can have free occurrences of x

Examples

λ-term	Pattern to match		
	$\lambda x . t[x]$	$\lambda y . t[]$	$\lambda x . \lambda y . t[x]$
$\lambda z . z$	\mathbf{Y}	\mathbf{N}	\mathbf{N}
$\lambda z . x$	\mathbf{Y}	\mathbf{Y}	\mathbf{N}
$\lambda y \cdot \lambda y \cdot y$	\mathbf{Y}	\mathbf{Y}	\mathbf{N}
$\lambda x . \lambda y \cdot(x \lambda y \cdot y)$	\mathbf{Y}	\mathbf{N}	\mathbf{Y}

