
CS101C

Type Theory
and Formal Methods

Lecture 4

April 9, 2003

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 1



MetaPRL

MetaPRL is the latest in the PRL family of systems (λ-PRL,
Micro-PRL, NuPRL, MetaPRL) developed over the last 25 years.
MetaPRL (called NuPRL-Light at first) project was started by
Jason Hickey in 1995. I joined the MetaPRL project in 1998.

MetaPRL contributors include:

Caltech: Jason Hickey, Aleksey Nogin, Xin Yu, Brian
Aydemir, Adam Granicz

Cornell: Robert Constable, Alexei Kopylov, Lori Lorigo,
Richard Eaton, Christoph Kreitz, Eli Barzilay

CUNY: Sergei Artemov, Yegor Bryuhov

Moscow State University: Vladimir Krupski

Other: Stephan Schmitt, Carl Witty
CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 2



General Theorem Prover
Structure

From a very high-level point of view,
a modern interactive prover can be di-
vided into three parts:

The core of the system — its
logical engine (or refiner [Bates
1979]) is in charge of handling
primitive proof steps.

Meta-theory and basic tactics
provide a “support layer”; and

Axiomatizations of logical the-
ories, each potentially equipped
with custom proof search, dis-
play and other mechanisms.

Meta−Theory

Logical Engine

Logical Theories

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 3



MetaPRL Structure

In MetaPRL refiner:

Term module implements basic logical
language.

Rewriter module provides a
mechanism for complex syntactical
transformations.

Proof accounting module keeps track
of what have been proven.

Meta−Theory

Tactic Interface

Theorems

Tactics

Logical Theories

Inference rules

Syntax definitions
Rewrite definitions

Rewriter

Proof

Refiner

Term

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 4



MetaPRL Structure
In MetaPRL logical theories

Syntax definitions specify the language.

Inference rules define the primitive
inferences. Example (axiom):

Γ; A ` A

Rewrites define computational and
definitional equivalences. Example
(β-reduction): (λx. b[x]) a←→ b[a]

Theorems provide proofs for derived
inference rules and axioms.

Tactics provide theory-specific proof
search automation.

Meta−Theory

Tactic Interface

Theorems

Tactics

Logical Theories

Inference rules

Syntax definitions
Rewrite definitions

Rewriter

Proof

Refiner

Term

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 5



Tactics
In general, a tactic is a program that selects a proof steps for
logical engine to perform.

Tactics do not have to be correct

Tactics are heuristics

Tactics can potentially fail, make no progress, build a
partial proof, or build a complete proof

A simplest tactic is a single inference rule

In MetaPRL, tactics are written in OCaml language, using a
set of basic combinators (called tacticals).

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 6



Basic Tacticals
tryT tac tries applying tac (make no progress if tac fails).

tac1 thenT tac2 applies tac1, then on all subgoals it applies
tac2. Fails is either tac fails.

tac1 orthenT tac2 tries tac1, then (whether that works or
not) on all subgoals it applies tac2.

tac1 orelseT tac2 applies tac1, and if that fails, then
applies tac2.

onSomeHypT (OCaml type: (int -> tactic) ->
tactic) applies its argument on each hypothesis number
(from 1 to number of hypotheses) until first success.

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 7



Homework 2
Homework 2 will be posted tonight

Due: Wednesday, Apr 16, at 2PM

Task: Write several proofs in MetaPRL

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 – p. 8


	Metaprl 
	General Theorem Prover Structure
	Metaprl Structure
	Metaprl Structure
	Tactics
	Basic Tacticals
	Homework 2

