CS101C

Type Theory
and Formal Methods

Lecture 4

April 9, 2003

MetaPRL

MetaPRL 1s the latest in the PRL family of systems (\-PRL,
Micro-PRL, NuPRL, MetaPRL) developed over the last 235 years.
MetaPRL (called NuPRL-Light at first) project was started by
Jason Hickey in 1995. I joined the MetaPRL project in 1998.

MetaPRL contributors include:
W Caltech: Jason Hickey, Aleksey Nogin, Xin Yu, Brian
Aydemir, Adam Granicz

m Cornell: Robert Constable, Alexe1 Kopylov, Lori Lorigo,
Richard Eaton, Christoph Kreitz, Eli Barzilay

B CUNY: Sergel Artemov, Yegor Bryuhov
m Moscow State University: Vladimir Krupski
2] B Other: Stephan Schmitt, Carl Witty

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 —p. 2

General Theorem Prover
Structure

From a very high-level point of view,
a modern interactive prover can be di-
vided into three parts:

B The core of the system — its _ _
logical engine (or refiner [Bates O—Oglcal Engine)

1979]) is in charge of handling V
primitive proof steps. (Meta_Theory)
W Meta-theory and basic tactics V

provide a “support layer”; and CLogicaI Theories)
B Axiomatizations of logical the-

ories, each potentially equipped
with custom proof search, dis-

2' play and other mechanisms.

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 -p. 3

MetaPRL Structure

Refiner

In MetaPRL refiner:
B Term module implements basic logical
language. B
(Tactic Interface)
B Rewriter module provides a y
. , (Meta-Theory)
mechanism for complex syntactical
. (" . , ™
transformations. Logical Theories

. Syntax definitions
m Proof accounting module keeps track Rewrite defintions
Inference rules
of what have been proven.

(Theorems)

2' \(Tactics))

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 - p. 4

MetaPRL Structure

In MetaPRL logical theories (Refiner

W Syntax definitions specily the language.

W /nference rules define the primitive
inferences. Example (axiom):
| \T/
A+ A (Tactic Interface)
. v
m Rewrites define computational and (Meta-Theory)
definitional equivalences. Example — L
) ogical Theories
(ﬁ-l’edUCtIOH)I ()\$.0 [37]) a<+— b [a] Syntax definitions
.] Rewrite definitions
W Theorems provide proofs for derived Inference rules

inference rules and axioms. (Theorems)

2] B Jactics provide theory-specific proof (Tactics)

search automation. N J

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 -p. 5

In general, a factic 1s a program that selects a proof steps for
logical engine to perform.

m Tactics do not have to be correct
W Tactics are heuristics

m Tactics can potentially fail, make no progress, build a
partial proof, or build a complete proof

®m A simplest tactic is a single inference rule

®m In MetaPRL, tactics are written in OCaml language, using a
set of basic combinators (called tacticals).

x e

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 - p. 6

Basic Tacticals

m tryT tac tries applying tac (make no progress if tac fails).

W facy thenT taco applies tacy, then on all subgoals it applies
taco. Fails 1s either tac fails.

M {acy orthenT tacy tries tacy, then (whether that works or
not) on all subgoals it applies tacs.

W facy orelseT tacy applies tacy, and if that fails, then
applies tacs.

®m onSomeHypT (OCaml type: (int —-> tactic) —->
tactic) applies its argument on each hypothesis number
(from 1 to number of hypotheses) until first success.

x e

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 -p. 7

Homework 2

Homework 2 will be posted tonight
Due: Wednesday, Apr 16, at 2PM
Task: Write several proofs in MetaPRL

CS101C: Type Theory and Formal Methods Lecture 4 April 9, 2003 -p. 8

	Metaprl
	General Theorem Prover Structure
	Metaprl Structure
	Metaprl Structure
	Tactics
	Basic Tacticals
	Homework 2

