CS101C
 Type Theory and Formal Methods

Lecture 10

May 5, 2003

"Canonical" Operators

For each operator in type theory, we will say whether it is "canonical" or not. Informally, a "canonical" operators represent the end-results of computation and non-canonical ones represent intermediate results.
Operator Canonical? Reduction for non-canonical case

apply	No	apply $\{\operatorname{lambda}\{x . t[x]\} ; a\} \rightsquigarrow t[a]$
lambda	Yes	
pair	Yes	
fst, snd	No	fst $\{$ pair $\{a ; b\}\} \rightsquigarrow a$
inl,inr	Yes	
decide	No	decide $\{\operatorname{inl}\{a\} ; x . l[x] ; y . r[y]\} \rightsquigarrow l[a]$ decide $\{\operatorname{inr}\{a\} ; x . l[x] ; y . r[y]\} \rightsquigarrow r[a]$

Canonical Terms and Types

A closed term is canonical if its top level operator is canonical.
Types are defined based on what canonical terms have that type.
A non-canonical closed term t that evaluates to a canonical t^{\prime} has whatever types t^{\prime} has.

In our type theory, non-terminating computations do not have types.

Examples.

$A \times B$ is a type of pairs pair $\{a ; b\}$ such that $a \in A$ and $b \in B$.
$A+B$ is a type of terms $\operatorname{inl}\{a\}$ where $a \in A$ and terms inr $\{b\}$ where $b \in B$.
$A \rightarrow B$ is a type of lambdas lambda $\{x . t[x]\}$ such that for any
$x \in A, t[x] \in B$

What is equality?

When can we say that $\lambda x \cdot t_{1}[x]=\lambda x . t_{2}[x]$?
Intensional equality: when they are the same terms (e.g. α-equal or similar).

Extensional equality: when they compute the same function.

Equality

We have defined " $\lambda x \cdot t_{1}[x]=\lambda x \cdot t_{2}[x] \in(A \rightarrow B)$ " as "for any $a_{1}=a_{2} \in A$, it must be the case that $t_{1}\left[a_{1}\right]=t_{2}\left[a_{2}\right] \in B$ ".

We would expect that when $\lambda x . t[x] \in(A \rightarrow B)$, then also $\lambda x . t[x]=\lambda x . t[x] \in(A \rightarrow B)$.

This means that when $\lambda x . t[x] \in(A \rightarrow B)$, then whenever $a=a^{\prime} \in A$, then also $t[a]=t\left[a^{\prime}\right] \in B!$

Equality and Dependent Types

How should we define $\lambda x \cdot t_{1}[x]=\lambda x . t_{2}[x] \in(x: A \rightarrow B[x])$?
Answer: as "for any $a_{1}=a_{2} \in A$, it must be the case that $t_{1}\left[a_{1}\right]=t_{2}\left[a_{2}\right] \in B\left[a_{1}\right]$ " and the type " $x: A \rightarrow B[x]$ " is only well-formed when for any $a_{1}=a_{2} \in A, B\left[a_{1}\right]=B\left[a_{2}\right]$.

We will write " $r_{1}=r_{2} \in T_{1}=T_{2}$ " as an abbreviation for " $T_{1}=T_{2}$ and $r_{1}=r_{2} \in T_{1}$ " and " $r_{1}=r_{2} \in T$ " will mean " T is a well-formed type expression and r_{1} and r_{2} are well-formed elements of T that are equal in T."

Equality and Sequents

We expect the following sequents to mean the same thing:

$$
\begin{gathered}
\Gamma \vdash \lambda x . t[x] \in(A \rightarrow B[x]) \\
\Gamma ; x: A \vdash t[x] \in B[x] \\
\Gamma ; x: A \vdash B[x] \operatorname{ext} t[x]
\end{gathered}
$$

where ext $t[x]$ is a notation for "the evidence of this is $t[x]$ " (ext stands for "extract", as in "the evidence we'll extract from the proof").

Semantics of sequents

Therefore we need to add the "equality" part to the definition of sequent semantics:

$$
x_{1}: A_{1} ; x_{2}: A_{2}\left[x_{1}\right] ; \cdots ; x_{n}: A_{n}\left[x_{1} ; \cdots ; x_{n-1}\right] \vdash C\left[x_{1} ; \cdots ; x_{n}\right] \operatorname{ext} t\left[x_{1} ; \cdots ; x_{n}\right]
$$

is "true" when for any $a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$, whenever

$$
\begin{gathered}
a_{1}=a_{1}^{\prime} \in A_{1} \text { and } a_{2}=a_{2}^{\prime} \in A_{2}\left[a_{1}\right]=A_{2}\left[a_{1}^{\prime}\right] \text { and } \cdots \\
a_{n}=a_{n}^{\prime} \in A_{n}\left[a_{1} ; \cdots ; a_{n-1}\right]=A_{n}\left[a_{1}^{\prime} ; \cdots ; a_{n-1}^{\prime}\right]
\end{gathered}
$$

then also

$$
t\left[a_{1} ; \cdots ; a_{n}\right]=t\left[a_{1}^{\prime} ; \cdots ; a_{n-1}^{\prime}\right] \in C\left[a_{1} ; \cdots ; a_{n}\right]=C\left[a_{1}^{\prime} ; \cdots ; a_{n-1}^{\prime}\right] .
$$

