CS101C Type Theory and Formal Methods

Lecture 10

May 5, 2003

CS101C: Type Theory and Formal Methods

"Canonical" Operators

For each operator in type theory, we will say whether it is "*canonical*" or not. Informally, a "canonical" operators represent the end-results of computation and non-canonical ones represent intermediate results.

Operator	Canonical?	Reduction for non-canonical case
apply	No	$\texttt{apply}\{\texttt{lambda}\{x.t[x]\};a\} \rightsquigarrow t[a]$
lambda	Yes	
pair	Yes	
fst,snd	No	$\texttt{fst}\{\texttt{pair}\{a;b\}\} \rightsquigarrow a$
inl,inr	Yes	
decide	No	$\texttt{decide}\{\texttt{inl}\{a\}; x.l[x]; y.r[y]\} \rightsquigarrow l[a]$
		$\texttt{decide}\{\texttt{inr}\{a\}; x.l[x]; y.r[y]\} \rightsquigarrow r[a]$

CS101C: Type Theory and Formal Methods

Yes

inion

Canonical Terms and Types

A closed term is canonical if its top level operator is canonical.

Types are defined based on what *canonical* terms have that type. A non-canonical *closed* term t that evaluates to a canonical t' has whatever types t' has.

In our type theory, non-terminating computations do not have types.

Examples.

 $A \times B$ is a type of pairs pair $\{a; b\}$ such that $a \in A$ and $b \in B$. A + B is a type of terms $\operatorname{inl}\{a\}$ where $a \in A$ and terms $\operatorname{inr}\{b\}$ where $b \in B$.

What is equality?

When can we say that $\lambda x.t_1[x] = \lambda x.t_2[x]$?

Intensional equality: when they are the same terms (e.g. α -equal or similar).

Extensional equality: when they compute the same function.

Equality

We have defined " $\lambda x.t_1[x] = \lambda x.t_2[x] \in (A \to B)$ " as "for any $a_1 = a_2 \in A$, it must be the case that $t_1[a_1] = t_2[a_2] \in B$ ".

We would expect that when $\lambda x.t[x] \in (A \to B)$, then also $\lambda x.t[x] = \lambda x.t[x] \in (A \to B)$.

This means that when $\lambda x.t[x] \in (A \to B)$, then whenever $a = a' \in A$, then also $t[a] = t[a'] \in B!$

Equality and Dependent Types

How should we define $\lambda x.t_1[x] = \lambda x.t_2[x] \in (x : A \to B[x])$?

Answer: as "for any $a_1 = a_2 \in A$, it must be the case that $t_1[a_1] = t_2[a_2] \in B[a_1]$ " and the type " $x : A \to B[x]$ " is only well-formed when for any $a_1 = a_2 \in A$, $B[a_1] = B[a_2]$.

We will write " $r_1 = r_2 \in T_1 = T_2$ " as an abbreviation for " $T_1 = T_2$ and $r_1 = r_2 \in T_1$ " and " $r_1 = r_2 \in T$ " will mean "T is a well-formed type expression and r_1 and r_2 are well-formed elements of T that are equal in T."

Equality and Sequents

We expect the following sequents to mean the same thing:

$$\begin{split} \Gamma &\vdash \lambda x.t[x] \in (A \to B[x]) \\ \Gamma; \, x: A \vdash t[x] \in B[x] \\ \Gamma; \, x: A \vdash B[x] \text{ ext } t[x] \end{split}$$

where ext t[x] is a notation for "the evidence of this is t[x]" (ext stands for "extract", as in "the evidence we'll extract from the proof").

Semantics of sequents

Therefore we need to add the "equality" part to the definition of sequent semantics:

 $x_1:A_1; x_2:A_2[x_1]; \cdots; x_n:A_n[x_1; \cdots; x_{n-1}] \vdash C[x_1; \cdots; x_n] \text{ ext } t[x_1; \cdots; x_n]$

is "true" when for any $a_1, \ldots, a_n, a'_1, \ldots, a'_n$, whenever

$$a_1 = a'_1 \in A_1 \text{ and } a_2 = a'_2 \in A_2[a_1] = A_2[a'_1] \text{ and } \cdots$$

 $a_n = a'_n \in A_n[a_1; \cdots; a_{n-1}] = A_n[a'_1; \cdots; a'_{n-1}],$

then also

$$t[a_1; \cdots; a_n] = t[a'_1; \cdots; a'_{n-1}] \in C[a_1; \cdots; a_n] = C[a'_1; \cdots; a'_{n-1}].$$

