
CS101C

Type Theory
and Formal Methods

Lecture 10

May 5, 2003

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 1/8



“Canonical” Operators

For each operator in type theory, we will say whether it is
“canonical” or not. Informally, a “canonical” operators
represent the end-results of computation and non-canonical
ones represent intermediate results.
Operator Canonical? Reduction for non-canonical case
apply No apply{lambda{x.t[x]}; a} t[a]

lambda Yes
pair Yes
fst, snd No fst{pair{a; b}} a

inl, inr Yes
decide No decide{inl{a}; x.l[x]; y.r[y]} l[a]

decide{inr{a}; x.l[x]; y.r[y]} r[a]

union Yes
CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 2/8



Canonical Terms and
Types

A closed term is canonical if its top level operator is canonical.

Types are defined based on what canonical terms have that type.
A non-canonical closed term t that evaluates to a canonical t′

has whatever types t′ has.

In our type theory, non-terminating computations do not have
types.

Examples.
A × B is a type of pairs pair{a; b} such that a ∈ A and b ∈ B.
A + B is a type of terms inl{a} where a ∈ A and terms
inr{b} where b ∈ B.
A → B is a type of lambdas lambda{x.t[x]} such that for any
x ∈ A, t[x] ∈ B

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 3/8



What is equality?

When can we say that λx.t1[x] = λx.t2[x]?

Intensional equality: when they are the same terms (e.g.
α-equal or similar).

Extensional equality: when they compute the same function.

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 4/8



Equality

We have defined “λx.t1[x] = λx.t2[x] ∈ (A → B)” as “for any
a1 = a2 ∈ A, it must be the case that t1[a1] = t2[a2] ∈ B”.

We would expect that when λx.t[x] ∈ (A → B), then also
λx.t[x] = λx.t[x] ∈ (A → B).

This means that when λx.t[x] ∈ (A → B), then whenever
a = a′ ∈ A, then also t[a] = t[a′] ∈ B!

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 5/8



Equality and Dependent
Types

How should we define λx.t1[x] = λx.t2[x] ∈ (x : A → B[x])?

Answer: as “for any a1 = a2 ∈ A, it must be the case that
t1[a1] = t2[a2] ∈ B[a1]” and the type “x : A → B[x]” is only
well-formed when for any a1 = a2 ∈ A, B[a1] = B[a2].

We will write “r1 = r2 ∈ T1 = T2” as an abbreviation for
“T1 = T2 and r1 = r2 ∈ T1” and “r1 = r2 ∈ T ” will mean “T is
a well-formed type expression and r1 and r2 are well-formed
elements of T that are equal in T .”

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 6/8



Equality and Sequents

We expect the following sequents to mean the same thing:

Γ ` λx.t[x] ∈ (A → B[x])

Γ; x : A ` t[x] ∈ B[x]

Γ; x : A ` B[x] ext t[x]

where ext t[x] is a notation for “the evidence of this is t[x]”
(ext stands for “extract”, as in “the evidence we’ll extract from
the proof”).

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 7/8



Semantics of sequents

Therefore we need to add the “equality” part to the definition of
sequent semantics:

x1 : A1; x2 : A2[x1]; · · · ; xn : An[x1; · · · ; xn−1] ` C[x1; · · · ; xn] ext t[x1; · · · ; xn]

is “true” when for any a1, . . . , an, a′
1
, . . . , a′

n
, whenever

a1 = a′
1 ∈ A1 and a2 = a′

2 ∈ A2[a1] = A2[a
′
1] and · · ·

an = a′
n
∈ An[a1; · · · ; an−1] = An[a′

1; · · · ; a′
n−1],

then also

t[a1; · · · ; an] = t[a′

1
; · · · ; a′

n−1
] ∈ C[a1; · · · ; an] = C[a′

1
; · · · ; a′

n−1
].

CS101C:Type Theory and Formal Methods Lecture 10 May 5, 2003 – p. 8/8


	``Canonical'' Operators
	Canonical Terms and Types
	What is equality?
	Equality
	Equality and Dependent Types
	Equality and Sequents
	Semantics of sequents

