
CS101C

Type Theory
and Formal Methods

Aleksey Nogin

CA
LI
FO
R
N
IA
IN

STI
TUTE OF TECH

N
O
ILO
GY

Lecture 1

March 31, 2003

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 1/15

Quick Information

Time: MW 14:00 – 14:55
Place: Jorgensen 74
Instructor: Aleksey Nogin
TA: Xin Yu
Office Hours: TBA
Units: 9 (2+3+4), pass/fail or letter grade
Grading: Homeworks (possibly final project)
Course Home Page: http://nogin.org/cs101c/

Admin email: cs101-admin@metaprl.org

Mailing list: cs101-class@metaprl.org

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 2/15

http://nogin.org/cs101c/

Formal Methods
Formal Methods is a science of mathematically describing and
reasoning about computer-based systems (including hardware
and software).

Formal Methods help in the reduction of errors introduced into a
system, particularly at the earlier stages of design.

(From WWW Virtual Library — http://www.afm.sbu.ac.uk/)

This course will focus on Logic and Computer-Aided Reasoning
sides of Formal Methods.

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 3/15

http://www.afm.sbu.ac.uk/

Pentium FDIV Bug

One of the most famous and most expensive bugs.

Pentium FDIV Bug (1994) cost Intel $475,000,000.

It highlighted the need for formal verification.

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 4/15

Four Color Theorem

The first proof of the Four Color Theorem (Appel and
Haken, 1976) involved two programs and about 1200 hours
(50 days) of CPU time.

Many mathematicians were at first very skeptical about the
proof.

It turned out that one of the programs had a small bug (but a
conservative one).

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 5/15

Formal Methods
Formal Methods are widely used in:

Hardware verification: Intel, Motorola, AMD, HP, etc. Verifying
floating point units is especially popular.

Software verification: Microsoft, NASA, etc.

Formal mathematics

Education

Other areas

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 6/15

Potential of Formal
Methods

While the impact of formal methods is often limited, they have
a great potential — far beyond what is possible today.

Hardware: ability to handle whole chips, not just individual
units.

Software: ability to handle large programs with complex
structure.

Formal tools: accessible to ordinary engineers, not just
those with a PhD.

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 7/15

Focusing on
Understanding

Currently most of the applications of formal methods focus
on correctness (and sometimes on debugging).

However a bigger value of formal methods is in being able
to better understand the artifacts (uncover hidden
assumptions, etc) we are working with and in using this
knowledge during design and development.

Example: Ensemble verification project at Cornell.

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 8/15

Proofs
What is a proof?

Proof is a sequence of statements, where each one is either an
axiom or follows from previous statements in the proof using a
rule of inference.

Example

1. Socrates is a human (AXIOM).

2. All humans are mortal (AXIOM).

3. Socrates is mortal (FOLLOWS FROM (1) AND (2)).

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 9/15

Language of
Propositional Logic

> “True”
⊥ “False”

A, B, C . . . variables
A ∨ B “A or B”
A ∧ B “A and B”
A ⇒ B “A implies B”
¬A “not A”

In classical logic, each variable (and each formula) always
stands for either True or False.

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 10/15

Sequents

A sequent “A1; A2; . . . ; An ` C stands for “If all the
hypotheses A1, A2, . . . , An are true, then the conclusion C

must be true as well.”

We will use Greek letters Γ, ∆, . . . to denote arbitrary
sequences of hypotheses (e.g. Γ ` C).

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 11/15

Inference Rules for
Classical Logic – I

Γ; A; ∆ ` A
(Axiom)

Γ; A; A; ∆ ` C

Γ; A; ∆ ` C
(Copy)

Γ; ∆ ` C

Γ; A; ∆ ` C
(Weakening)

Γ ` >

(True-intro)
Γ; ⊥; ∆ ` C

(False-elim)

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 12/15

Inference Rules for
Classical Logic – II

Γ ` A

Γ ` A ∨ B
(Or-intro-1)

Γ ` B

Γ ` A ∨ B
(Or-intro-2)

Γ; A; ∆ ` C Γ; B; ∆ ` C

Γ; A ∨ B; ∆ ` C
(Or-elim)

Γ ` A Γ ` B

Γ ` A ∧ B
(And-intro)

Γ; A; B; ∆ ` C

Γ; A ∧ B; ∆ ` C
(And-elim)

Γ; A ` B

Γ ` A ⇒ B
(Imp-intro)

Γ; ∆ ` A Γ; B; ∆ ` C

Γ; A ⇒ B; ∆ ` C
(Imp-elim)

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 13/15

Inference Rules for
Classical Logic – III

Γ; A ` ⊥

Γ ` ¬A
(Not-intro)

Γ; ∆ ` A

Γ; ¬A; ∆ ` C
(Not-elim)

Γ; ¬A ` ⊥

Γ ` A
(Proof by contradiction)

Γ; ∆; Γ′; ∆′
` C

Γ; Γ′; ∆; ∆′ ` C
(Swap)

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 14/15

Inference Rules for
Classical Logic – All

Γ; A; ∆ ` A

(Axiom)
Γ; A; A; ∆ ` C

Γ; A; ∆ ` C

(Copy)
Γ; ∆ ` C

Γ; A; ∆ ` C

(Weakening)

Γ; ∆; Γ′; ∆′
` C

Γ; Γ′; ∆; ∆′ ` C

(Swap)
Γ ` >

(True-intro)
Γ; ⊥; ∆ ` C

(False-elim)

Γ ` A

Γ ` A ∨ B

(Or-intro-1)
Γ ` B

Γ ` A ∨ B

(Or-intro-2)
Γ; A; ∆ ` C Γ; B; ∆ ` C

Γ; A ∨ B; ∆ ` C

(Or-elim)

Γ ` A Γ ` B

Γ ` A ∧ B

(And-intro)
Γ; A; B; ∆ ` C

Γ; A ∧ B; ∆ ` C

(And-elim)

Γ; A ` B

Γ ` A ⇒ B

(Imp-intro)
Γ; ∆ ` A Γ; B; ∆ ` C

Γ; A ⇒ B; ∆ ` C

(Imp-elim)

Γ; A ` ⊥

Γ ` ¬A

(Not-intro)
Γ; ∆ ` A

Γ; ¬A; ∆ ` C

(Not-elim)
Γ; ¬A ` ⊥

Γ ` A

(Proof by contradiction)

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 15/15

	Quick Information
	Formal Methods
	Pentium FDIV Bug
	Four Color Theorem
	Formal Methods
	Potential of Formal Methods
	Focusing on Understanding
	Proofs
	Language of Propositional Logic
	Sequents
	Inference Rules for Classical Logic -- I
	Inference Rules for Classical Logic -- II
	Inference Rules for Classical Logic -- III
	Inference Rules for Classical Logic -- All

