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Quick Information

Time: MW 14:00 – 14:55
Place: Jorgensen 74
Instructor: Aleksey Nogin
TA: Xin Yu
Office Hours: TBA
Units: 9 (2+3+4), pass/fail or letter grade
Grading: Homeworks (possibly final project)
Course Home Page: http://nogin.org/cs101c/

Admin email: cs101-admin@metaprl.org

Mailing list: cs101-class@metaprl.org
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Formal Methods
Formal Methods is a science of mathematically describing and
reasoning about computer-based systems (including hardware
and software).

Formal Methods help in the reduction of errors introduced into a
system, particularly at the earlier stages of design.

(From WWW Virtual Library — http://www.afm.sbu.ac.uk/)

This course will focus on Logic and Computer-Aided Reasoning
sides of Formal Methods.
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Pentium FDIV Bug

One of the most famous and most expensive bugs.

Pentium FDIV Bug (1994) cost Intel $475,000,000.

It highlighted the need for formal verification.
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Four Color Theorem

The first proof of the Four Color Theorem (Appel and
Haken, 1976) involved two programs and about 1200 hours
(50 days) of CPU time.

Many mathematicians were at first very skeptical about the
proof.

It turned out that one of the programs had a small bug (but a
conservative one).
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Formal Methods
Formal Methods are widely used in:

Hardware verification: Intel, Motorola, AMD, HP, etc. Verifying
floating point units is especially popular.

Software verification: Microsoft, NASA, etc.

Formal mathematics

Education

Other areas
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Potential of Formal
Methods

While the impact of formal methods is often limited, they have
a great potential — far beyond what is possible today.

Hardware: ability to handle whole chips, not just individual
units.

Software: ability to handle large programs with complex
structure.

Formal tools: accessible to ordinary engineers, not just
those with a PhD.
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Focusing on
Understanding

Currently most of the applications of formal methods focus
on correctness (and sometimes on debugging).

However a bigger value of formal methods is in being able
to better understand the artifacts (uncover hidden
assumptions, etc) we are working with and in using this
knowledge during design and development.

Example: Ensemble verification project at Cornell.
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Proofs
What is a proof?

Proof is a sequence of statements, where each one is either an
axiom or follows from previous statements in the proof using a
rule of inference.

Example

1. Socrates is a human (AXIOM).

2. All humans are mortal (AXIOM).

3. Socrates is mortal (FOLLOWS FROM (1) AND (2)).
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Language of
Propositional Logic

> “True”
⊥ “False”

A, B, C . . . variables
A ∨ B “A or B”
A ∧ B “A and B”
A ⇒ B “A implies B”
¬A “not A”

In classical logic, each variable (and each formula) always
stands for either True or False.
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Sequents

A sequent “A1; A2; . . . ; An ` C stands for “If all the
hypotheses A1, A2, . . . , An are true, then the conclusion C

must be true as well.”

We will use Greek letters Γ, ∆, . . . to denote arbitrary
sequences of hypotheses (e.g. Γ ` C).
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Inference Rules for
Classical Logic – I

Γ; A; ∆ ` A
(Axiom)

Γ; A; A; ∆ ` C

Γ; A; ∆ ` C
(Copy)

Γ; ∆ ` C

Γ; A; ∆ ` C
(Weakening)

Γ ` >

(True-intro)
Γ; ⊥; ∆ ` C

(False-elim)

CS101C: Type Theory and Formal Methods Lecture 1 March 31, 2003 – p. 12/15



Inference Rules for
Classical Logic – II

Γ ` A

Γ ` A ∨ B
(Or-intro-1 )

Γ ` B

Γ ` A ∨ B
(Or-intro-2 )

Γ; A; ∆ ` C Γ; B; ∆ ` C

Γ; A ∨ B; ∆ ` C
(Or-elim)

Γ ` A Γ ` B

Γ ` A ∧ B
(And-intro)

Γ; A; B; ∆ ` C

Γ; A ∧ B; ∆ ` C
(And-elim)

Γ; A ` B

Γ ` A ⇒ B
(Imp-intro)

Γ; ∆ ` A Γ; B; ∆ ` C

Γ; A ⇒ B; ∆ ` C
(Imp-elim)
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Inference Rules for
Classical Logic – III

Γ; A ` ⊥

Γ ` ¬A
(Not-intro)

Γ; ∆ ` A

Γ; ¬A; ∆ ` C
(Not-elim)

Γ; ¬A ` ⊥

Γ ` A
(Proof by contradiction)

Γ; ∆; Γ′; ∆′
` C

Γ; Γ′; ∆; ∆′ ` C
(Swap)
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Inference Rules for
Classical Logic – All

Γ; A; ∆ ` A

(Axiom)
Γ; A; A; ∆ ` C

Γ; A; ∆ ` C

(Copy)
Γ; ∆ ` C

Γ; A; ∆ ` C

(Weakening)

Γ; ∆; Γ′; ∆′
` C

Γ; Γ′; ∆; ∆′ ` C

(Swap)
Γ ` >

(True-intro)
Γ; ⊥; ∆ ` C

(False-elim)

Γ ` A

Γ ` A ∨ B

(Or-intro-1)
Γ ` B

Γ ` A ∨ B

(Or-intro-2)
Γ; A; ∆ ` C Γ; B; ∆ ` C

Γ; A ∨ B; ∆ ` C

(Or-elim)

Γ ` A Γ ` B

Γ ` A ∧ B

(And-intro)
Γ; A; B; ∆ ` C

Γ; A ∧ B; ∆ ` C

(And-elim)

Γ; A ` B

Γ ` A ⇒ B

(Imp-intro)
Γ; ∆ ` A Γ; B; ∆ ` C

Γ; A ⇒ B; ∆ ` C

(Imp-elim)

Γ; A ` ⊥

Γ ` ¬A

(Not-intro)
Γ; ∆ ` A

Γ; ¬A; ∆ ` C

(Not-elim)
Γ; ¬A ` ⊥

Γ ` A

(Proof by contradiction)
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