CS101C Homework 3: Solutions

- 1. $\lambda x.t[x; y]$ and $\lambda x.x$ Yes and unique. $t[\bullet; y] = \bullet$
- 2. $\lambda x.\lambda y.\lambda x.t[x; y]$ and $\lambda x.\lambda y.\lambda z.(x y)$ No. The easies way to see it is to α -rename the second x in the pattern to z. Then the question becomes - can $\lambda x.\lambda y.\lambda z.t[z; y]$ match the term $\lambda x.\lambda y.\lambda z.(x y)$. Now the answer is clearly "no" because the pattern does not provide any way to have a free occurrence of x in the body of the λ .
- 3. t[] t[] and $x \lambda x.x$ No. The two t[] in the meta-term should match the same thing.
- 4. $\lambda x.\lambda y.t_1[x;t_2[y]]$ and $\lambda u.\lambda v.(v (u \lambda x.x))$ Yes and unique. $t_2[\bullet] = \bullet$ and $t_1[\bullet^1;\bullet^2] = \bullet^2 (\bullet^1 \lambda x.x)$.