## CS101C Homework 3: Solutions

1. $\lambda x . t[x ; y]$ and $\lambda x . x$

Yes and unique. $t[\bullet ; y]=\bullet$
2. $\lambda x . \lambda y \cdot \lambda x . t[x ; y]$ and $\lambda x . \lambda y \cdot \lambda z .(x y)$

No. The easies way to see it is to $\alpha$-rename the second $x$ in the pattern to $z$. Then the question becomes - can $\lambda x \cdot \lambda y \cdot \lambda z . t[z ; y]$ match the term $\lambda x . \lambda y . \lambda z .(x y)$. Now the answer is clearly "no" because the pattern does not provide any way to have a free occurrence of $x$ in the body of the $\lambda$.
3. $t[] t[]$ and $x \lambda x . x$

No. The two $t[]$ in the meta-term should match the same thing.
4. $\lambda x \cdot \lambda y \cdot t_{1}\left[x ; t_{2}[y]\right]$ and $\lambda u \cdot \lambda v \cdot(v(u \lambda x \cdot x))$

Yes and unique. $t_{2}[\bullet]=\bullet$ and $t_{1}\left[\bullet^{1} ; \bullet^{2}\right]=\bullet^{2}\left(\bullet^{1} \lambda x . x\right)$.

